Adding new knowledge to ANDES

This summarizes the basic steps required to add new physics knowledge and problems to the ANDES knowledge base. It concentrates on scalar quantities and equations. Vector quantities and equations require similar steps but have some additional complexity; also, it requires changes to the Workbench to add new vector drawing tools.

A good model to study as an example is the file kb/optics.cl which illustrates the current method for adding scalar quantities and equations. Note however one oddity of the optics quantities is that they are all time-independent. Other files in the kb directory will show time-dependent quantities.

The basic operations are:

1. Adding a new kb file

2. Adding a new quantity

3. Adding a new scalar equation

4. Adding a new problem

5. [Putting in hints -- todo]

Adding a new kb file

The files constituting the kb have to be specified in “kb/AMFile.cl” and kb/AMFile-helpsys.cl. If you add a new file, you must make an entry for the filename in the kb/AMFile.cl to get the sgg to load it as part of the kb. Comments in that file should make it clear where new filenames need to be listed.

In addition, a similar entry must be made in kb/AMFile-helpsys in order to get the help system to load it at runtime. This is a variant of the AMFile that differs only in that the help system does not need to load all the problem descriptions.

The existing kb typically followed the practice of including knowledge for several related topics included in one large file. It also collected ontology declarations into a separate file. For example, the file “kb/Newtons2.cl” has most of the mechanics knowledge, and kb/forces.cl has most of the E&M knowledge. Similarly, ontology declarations (see below) were all collected into kb/ontology.cl (for mechanics) and kb/circuit-ontology.cl (for circuits and E&M). Almost all problems have been added to problems.cl, but E&M problems are in force-problems.cl

For the future, it is probably better to use a separate file for each topic, and keep the ontology declarations together near the rules that require them. See kb/optics.cl for an example of this way of structuring. Then only a single filename needs to be added to the kb/AMFile.cl.

Adding a new quantity

The required steps are as follows:

For the sgg:

1. Declare the quantity form with def-qexpr

2. Add a variable defining operator

For the workbench interface:

3. Add an entry to the workbench scalar quantity file

4. Specify a feature-set tag to be used to enable the quantity in the workbench.

Writing a def-qexpr

Quantity expressions must be declared as part of the “ontology” by the def-qexpr command. Examples are as follows:

(def-qexp mass
(mass ?body)

 :units |kg|

 :restrictions positive

 :fromWorkbench `(mass ,body)

 :english ("the mass of ~A" (nlg ?body)))

(def-qexp distance (distance ?body)

 :units |m|

 :fromWorkbench `(at (distance ,body) ,time)

 :english ("the distance travelled by ~A" (nlg ?body)))

(def-qexp distance-between (distance-between ?body ?body2)

 :units |m|

 :fromWorkbench `(at (distance-between ,body ,body2) ,time)

 :english ("the distance between ~A and ~a" (nlg ?body) (nlg ?body2)))

The term immediately after the def-qexp is the quantity-id which is used in some places to identify the quantity, for example when the workbench sends information about a quantity selected. Typically the quantity-id is the same as the first word in the quantity expression, though this is not required.

Following that is the quantity-form, a pattern indicating the structure of the quantity expression. Pattern variables beginning with “?” are used to indicate the argument places needed to specify the quantity. NOTE: the pattern does not include the time argument, even if the quantity is time dependent.. Time is handled by the completely general declaration of the “at” form (in kb/ontology.cl) used to represent the value of any quantity at a time.

Other slots that may be specified are:

:units

the default units for this quantity. This should be the SI symbol for the units, wrapped in vertical bars (so Lisp will preserve its case.)

:restrictions

may be one of “positive” or “nonnegative”. These constraints are given to the solver and may help it solve equations. Specifying a restriction here means that every variable of this quantity can be assumed to be constrained by this restriction.

:english

This gives Lisp format string and its arguments to be used to form the English text when the help system needs to refer to the quantity. In Lisp format strings, argument places are indicated by ~a (or ~A, there is no interesting difference.) The format arguments may use variables from the quantity-form.

Since this is a Lisp expression, any Lisp function can be used for the arguments as well. The most common is the function “(nlg)”, which can apply some simple translations on its arguments. With no further arguments, nlg treats its argument as a noun phrase, and will normally translate the symbol ‘car to “the car”. This translation uses a simple heuristic for recognizing proper names that should not take an article, so ‘R1 will not be printed as “the R1.

One can add a third argument to nlg can to specify different translations. See the declarations in ontology.cl for examples of other functions that might occasionally be appropriate. In some cases one might want to write a special-purpose Lisp function just for the purpose of formatting some argument.

:fromWorkbench

This is a bit of code used to build a quantity expression from the arguments sent by the workbench to the helpsystem after a the student fills out definition dialog. It may use the following 5 variables which the workbench will send to specify the choices made in the dialog box:

body, body2, time, subtype

NOTE: these are Lisp variables, NOT pattern-matching variables. They must have the exact names shown here. Though they will typically parallel the pattern-matching variables in the quantity-form, they are not the same variables.

In most simple cases it suffices to use the Lisp backquote macro to build an expression from a template. The template expression begins with a backquote, and uses a comma to indicate where the variable values should be substituted in. For example

`(at (distance ,body) ,time)

will build an expression of this form, pluggin in the value of the “body” and “time” choices in the dialog box in the appropriate places.

Write a variable-defining operator

One kb operator should be written to represent the step of defining the variable on the ANDES interface. Examples:

(defoperator define-potential-var (?loc ?source ?t)

 :preconditions (

 (bind ?V-var (format-sym "V_~A_~A_~A" ?loc ?source ?t))

)

 :effects (

 (variable ?V-var (at (potential ?loc ?source) ?t))

 (define-var (at (potential ?loc ?source) ?t))

)

 :hint (

 (bottom-out (string "Define a variable for the potential at ~A due to ~a by using the Add Variable command on the Variable menu and selecting Potential." ?loc ?source))

))

(defoperator define-object-distance (?lens)

 :preconditions ((bind ?do-var (format-sym "do_~A" (body-name ?lens))))

 :effects ((variable ?do-var (object-distance ?lens))

 (define-var (object-distance ?lens)))

 :hint (

 (bottom-out (string "Define a variable for the distance of the object from ~A by using the Add Variable command on the Variable menu and selecting Object Distance." ?lens))

))

All variable-defining operators will take this form and must have both a “variable” statement and “define-var” statement in their effects. The main difference among them, apart from the difference in which quantity is being specified, is in the way they format the variable name in the “bind” precondition. The variable name is a symbol which can take any form, the only requirement is that it be unique, which is usually assured by included a unique quantity-prefix and all the arguments in the variable name.

Typically this uses the helper function format-sym to build a symbol using a format-style string and argument list. Again, certain Lisp functions are commonly used to translate various arguments into printable forms, such as body-name for body names and “time-abbrev” for times. See existing variable-definition operators for examples.

 [For workbench display] Enter the quantity in the kb/scalars.tsv

When you are ready to test a problem using this quantity, you must register the quantity for the workbench to show. Do this by making an entry for the quantity in the file kb/scalars.tsv. The workbench (8.2.0 or later) uses this file to decide how to display the dialog for a scalar variable.

Scalars.tsv is in the format of tab-delimited-values. The easiest way to edit it is to edit the auxiliary excel-format file scalars.xls using Excel, which will give you a spreadsheet interface on the same data. When you have made the new entry in the excel file, Save your work (so the updated excel file will be preserved) and then do a Save As, selecting the format “Text (tab-delimited) (*.txt)” and specifying the file name of scalars.tsv. This will overwrite scalars.tsv in the correct format. (Note: the excel file exists only for editing convenience. It is not used by ANDES in any way at all. But it must be kept up to date if you wish to use this method of modifying scalars.tsv. It will be a good idea to backup scalars.tsv before changing it.)

Note: the order in which scalar quantities will appear on the Add Variable menu is controlled by their order in scalars.tsv, so it makes sense to keep related variables close together in a group.

Each line in scalars.tsv contains four fields:

1. the quantity-id. This must match the quantity-id in the def-qexpr

2. the variable prefix. This may be empty. Use $ followed by a letter for Greek symbols.

3. The “user-friendly” quantity name. This is what is shown in the dialog box and variable pane.

4. The dialog specification.

Dialog specifications

The dialog specification takes the form:

done on [body:bodies] by [body2:bodies] at time [time:times]

at [body:positions] due to [body2:bodies] at time [time:times]

Bracketed elements are choice specifications of the form [slotname:choicelistname]. Note no extraneous spaces should occur in the choice specifications.

Currently the slot-names must be one of “body”, “body2”, “time”. These correspond to the arguments in the “fromWorkbench” specification above. It is not necessary that the argument to the body slot actually be a body, it can be anything, but it has to be called “body”.

The choice lists may be one of

bodies, positions, branches, times

These lists must be specified as part of the defproblem (see below). These will indicate the possible choices for values of this slot.

Right now, this small set of possible slots and choices suffices to specify any scalar quantity used in ANDES. Possibly new quantities could require additional slots or choicelists. We plan to extend this mechanism to allow arbitrary numbers of slots and choicelists, but until that is required this has not been done.

These specifications work for simple dialogs and allow a problem to be tested in the workbench easily. However, for some quantities, fancier dialogs are required (e.g. one with a net/individual choice). These must be custom coded in the workbench code.

[For workbench display] Enter the quantity in kb/features.tsv

The workbench does not offer all quantities on all problems. Which quantities are offered is controlled by the feature tags included in the defproblem (see below). For simplicity, common groups of variables may be associated with a feature-set tag to be used in the problem. That way, a single feature tag may be specified in the problem to enable a whole group of variables in the workbench.

Feature sets are specified in the tab-delimited value format in the file kb/features.tsv. As with scalars.tsv, you can modify this file by editing the auxiliary excel-format file kb/features.xls, and saving your results to features.tsv in the tab-delimited text format (don’t forget to update features.xls as well!.). Features.tsv looks like this:

kinematics
distance;speed;duration;angle;

statics
mass;angle;coef-friction;duration;

dynamics
mass;angle;coef-friction;duration;

circular
mass;radius;period;duration;angle

energy
mass;duration;work;power;energy;compression;spring-constant;height;

work
work;power;duration;

linmom
energy;duration;

rotkin
mass;radius;period;duration;angle;moment-of-inertia;length;width;

angmom
mass;radius;period;duration;angle;moment-of-inertia;length;width;

torque
mass;radius;period;duration;angle;moment-of-inertia;length;width;

circuits
electric-power;current;voltage;resistance;capacitance;charge;stored-energy;inductance;current-change;time-constant;duration;

E&M
charge;potential;duration;

optics
object-distance;image-distance;focal-length;magnification;radius-of-curvature;lens-distance;

The first field is the feature-set tag, and can be anything. The second field is a list of quantity-ids to enable when the given feature-set is specified in the problem. These should be separated by semi-colons, including one at the end, with no spaces.

The order of variables in the list is immaterial since the order in the workbench menu is controlled by the order of appearance in kb/scalars.tsv.

Adding a new scalar equation

The required steps are as follows:

1. Specify the equation with def-psmclass

2. Add an equation-contains operator

3. Add an equation-writing operator

For the workbench interface:

4. Add the problem to the workbench equation menu file

Specify with def-psmclass

Every new equation should be declared with a def-psmclass statement. This step is not necessary merely for the sgg to solve the problem, but it is required for the help system to refer to the equation. Examples:

(def-psmclass focal-length-mirror (focal-length-mirror ?mirror)

 :complexity major

 :english ("the focal length of spherical mirror")

 :ExpFormat ("applying the formula for the focal length of a spherical mirror")

 :EqnFormat ("f = r/2"))

(def-psmclass point-charge-potential (point-charge-potential ?body ?loc ?time)

 :complexity major

 :english ("the formula for the electric potential due to a point charge")

 :ExpFormat ("calculating the electric potential at ~a due to ~a"

 (nlg ?loc) (nlg ?body))

 :EqnFormat ("V = kelec * q/r"))

(def-psmclass net-potential (net-potential ?loc ?time)

 :complexity major

 :english ("the definition of net electric potential")

 :ExpFormat ("calculating the net electric potential from all sources at ~a~a"

 (nlg ?loc) (nlg ?time 'pp))

 :EqnFormat ("Vnet = V1 + V2 + ..."))

As with def-qexpr, the first argument is a single identifier that can be used to reference this psm, and the next argument shows the pattern of the equation identifying expression, hereafter called the psm id. Typically the short psm identifier will match the first word in the psm id, but this is not required.

The structure of the psm id should be chosen so as to uniquely identify an instance of this particular equation. When adding a new psm it is important to think about the appropriate structure for a psm-id term. This identifier (with the variables filled in with concrete values) will be used in the knowledge base operators to specify the psm. You can think of it as a formal representation corresponding to something like: “Newton’s Law applied to the car during time 1 to 2”. The important thing is that it should include enough arguments to fully determine which instance of the equation is being applied.

If there is a principal body as one of the arguments to the psm id, by convention it should be the first argument.

Other arguments to def-psmclass are:

:complexity

may be major or minor. PSMs tagged ‘major are referred to by the Andes help system as “principles”, though that may be a misnomer. The key point is that they can be used as the first principle in a solution for the purposes of next step help, and also must be written explicitly for the purposes of the grading algorithm.

:English

is a format-style string for denoting to a psm instance. It may include format arguments which can use variables from the psm-id pattern. In many cases we do not actually format all the arguments into the English representation, in order to keep this simple, though that can occasionally result in messages that are ambiguous with respect to precisely which instance is being referred to.

:ExpFormat

This is an alternate English form used by next step help in somecontexts. It should be able to fit into a context like “Your goal should be …” or “A good step would be …” or “Why don’t you continue ….”.

:EqnFormat

This displays the general form of the equation. It should match the display on the workbench equation menu (see below). This is a literal string, no variable substitution is used.

Write an equation-contains operator

For a scalar equation to fit into the sgg framework, you must write at least one operator that achieves an effect of the form

(eqn-contains ?psm-id ?sought)

This assertion means the following:

the psm with id ?Psm-id might apply to furnish an equation for the quantity ?sought (so should be tried)

The operator functions like a subroutine that the generic sgg driver rules call with a specific sought as an input parameter, which must return the fully bound psm id as an output parameter.

Some examples:

(defoperator net-potential-contains (?sought)

 :preconditions (

 (any-member ?sought ((at (net-potential ?loc) ?t)

 (at (potential ?loc ?source) ?t)))

)

 :effects (

 (eqn-contains (net-potential ?loc ?t) ?sought)

))

(defoperator electric-energy-contains (?sought)

 :preconditions (

 (any-member ?sought ((at (electric-energy ?body) ?t)

 (at (net-potential ?loc) ?t)

 (at (charge-on ?body) ?t)

))

 ; if sought is potential, must bind body and time:

 (in-wm (at-place ?body ?loc ?t))

)

 :effects (

 (eqn-contains (electric-energy ?body ?t) ?sought)

))

(defoperator focal-length-mirror-contains (?sought)

 :preconditions (

 ; must declare object to be a mirror this way in problem statement

 (mirror ?mirror)

 (any-member ?sought ((focal-length ?mirror)

 (radius-of-curvature ?mirror)))

)

 :effects (

 (eqn-contains (focal-length-mirror ?mirror) ?sought)

))

Typically the “any-member” special form is used in the preconditions to match the sought to some member of a list of patterns of the quantities in the equation.

The main possible complexity in this rule is ensuring that all the argument places of the resulting psm-id are bound. Some of them will be bound when the sought is matched by the any-member statement, but for some soughts, other variables may remain unbound. For example, in the ‘electric-energy-contains’ above, in the case where the sought is net-potential at some location, one must choose a body to apply the electrostatic potential energy formula to. This is done by subsequent preconditions, in this case, by looking for an “at-place” statement including a body in the problem statement.

In some cases, the logic for choosing bindings for the psm-id arguments is substantially different for different soughts. In this case it can be necessary to write two or more operators with the eqn-contains result, each of which apply for different soughts.

The eqn-contains rule can also test in various ways that the equation is applicable. In the example above, the operator for focal-length-mirror tests that the sought has been declared to be a mirror (as opposed to a lens) in the problem statement. It is not strictly necessary to include all applicability tests in the eqn-contains operator. As explained above, the eqn-contains assertion only means that it might apply, so should be tried further. It is possible to overgenerate possibilities here as long as they are filtered out later. For that reason, some tests can be deferred to the equation writing operator. However, for efficiency, it is usually best to filter out possibilities as early as possible.

Write an equation writing operator

For a scalar equation, the only further step is to write the rule that actually writes the equation, once it has been asserted that it might apply. This rule achieves the effect of the form

(eqn ?algebra ?psm-id)

and can be thought of as a subroutine that takes the fully-specified psm-id as an input parameter and returns the algebra as an output parameter.

The main steps in writing a scalar equation are just to declare the variables and construct the prefix-form algebraic equation in terms of them. Some examples (with hints removed):

(defoperator focal-length-mirror (?mirror)

 :preconditions (

 (variable ?f (focal-length ?mirror))

 (variable ?r (radius-of-curvature ?mirror))

)

 :effects (

 (eqn (= ?f (/ ?r 2)) (focal-length-mirror ?mirror))

))

(defoperator write-electric-energy (?body ?t)

 :preconditions (

 (in-wm (at-place ?body ?loc ?t))

 (variable ?Ue (at (electric-energy ?body) ?t))

 (charge-var ?q (at (charge-on ?body) ?t))

 (variable ?Vnet (at (net-potential ?loc) ?t))

 ; this psm may be the only one to draw body

(optional (body ?body ?t))

)

 :effects (

 (eqn (= ?Ue (* ?q ?Vnet)) (electric-energy ?body ?t))

))

(defoperator write-net-potential (?loc ?t)

 :preconditions (

 (variable ?Vnet (at (net-potential ?loc) ?t))

 (in-wm (Efield-sources ?loc ?t ?sources))

 (map ?source ?sources

(variable ?V-var (at (potential ?loc ?source) ?t))

?V-var ?Vi)

)

 :effects (

 (eqn (= ?Vnet (+ . ?Vi)) (net-potential ?loc ?t))

))

Here the only complexity can be using the special forms like map to iterate over all elements in a list-valued variable. These forms are explained elsewhere (see AndesScript Users Manual.)

Note also the Lisp dot notation can be used to splice a list into the end of an algebra form, and that n-ary sums are allowed (including possibly empty sums!).

Enter in kb/principles.tsv

In order to display the equation in the workbench equation menu tree, an entry should be made in the file kb/principles.tsv. As with scalars.tsv and features.tsv, this file must be in tab-separated value form, and an auxiliary excel-formatted file, principles.xls has been provided solely to provided a simpler interface to editing the tsv file. To edit, edit the excel format, save changes, then Save As in the format “Text (tab-delimited)” into the file kb/principles.tsv.

This file contains a linearized representation of the equation menu tree. The initial elements are:

GROUP
Write a Principle

GROUP
Kinematics

GROUP
Translational

LEAF
vavg = s/t average speed
sdd
Average speed

LEAF
v(avg)_x = d_x/t average velocity
(avg-velocity ((?axis . x)))
Average velocity

LEAF
v(avg)_y = d_y/t average velocity
(avg-velocity ((?axis .y)))
Average velocity

LEAF
a(avg)_x = (vf_x - vi_x)/t average acceleration
(lk-no-s ((?axis . x)))
Average acceleration

LEAF
a(avg)_y = (vf_y - vi_y)/t average acceleration
(lk-no-s ((?axis . y)))
Average acceleration

LEAF
d_x = v0_x*t + 0.5*a_x*t^2 [ax is constant]
(lk-no-vf ((?axis . x)))
Constant acceleration

LEAF
d_y = v0_y*t + 0.5*a_y*t^2 [ay is constant]
(lk-no-vf ((?axis . y)))
Constant acceleration

LEAF
v_x = v0_x + a_x*t [ax is constant (or time average)]
(lk-no-s ((?axis . x)))
Constant acceleration

LEAF
v_y = v0_y + a_y*t [ax is constant (or time average)]
(lk-no-s ((?axis . y)))
Constant acceleration

LEAF
v_x^2 = v0_x^2 + 2*a_x*d_x [ax is constant]
(lk-no-t ((?axis . x)))
Constant acceleration

LEAF
v_y^2 = v0_y^2 + 2*a_y*d_y [ay is constant]
(lk-no-t ((?axis . y)))
Constant acceleration

LEAF
d_x = v_x * t [vx is constant (ax=0)]
(sdd-constvel ((?axis . x)))
Constant velocity component

LEAF
d_y = v_y * t [vy is constant (ay=0)]
(sdd-constvel ((?axis . y)))
Constant velocity component

LEAF
ac = v^2/r Centripetal acceleration (instantaneous)
centripetal-accel
Centripetal acceleration

LEAF
Vac_x = Vab_x + Vbc_x Relative velocity
(relative-vel ((?axis . x)))
Relative Velocity

LEAF
Vac_y = Vab_y + Vbc_y Relative velocity
(relative-vel ((?axis . y)))
Relative Velocity

END_GROUP

The first field must be “GROUP”, “LEAF”, or “END_GROUP”. The second field is the text to show for the given item. The third field is the form sent to the help system when this equation is chosen. Although this form is somewhat complicated for vector equations, for scalar equations, this field should just contain the short psm-id specified in the ontology (see centripetal-accel or sdd). The last field was intended to be friendly form of the principle name, but now its only significance is that it determines the name of the help file for the principle used by the workbench.

The help file for the principle should be placed in the Review directory with the .html extension. The actual help file name should not contain any spaces. Thus if the last field contains “Average acceleration” the workbench will look for a file named “AverageAcceleration.html” (case does not matter in windows file names). The workbench will behave reasonably if this file does not exist, so it is OK to include a field here even before the help file exists.

One can insert new groups into this table. Be careful to ensure that every GROUP heading is matched by an END_GROUP, or the tree structure will be corrupt.

Adding a new problem

Note: ANDES now has two methods of creating problems:

1. Old way: create a .fbd file, created by the authormode interface of the workbench, to create the workbench problem layout to be displayed, in addition to the .prb file containing the solution used by the helpsystem

2. New way (“autolayout”): include information in the defproblem to go into the prb file, which can be used by the workbench to automatically generate the problem layout. Problem graphics may be included by referencing a separate graphics file (usually a .gif).

The new “autolayout” method was introduced in the sgg of June 11, 2003. The main purpose was to make it easier to add new problems in the future. The idea is to store all required information in the .prb file alone and do away with the need for separate .fbd files entirely and, in particular, the step of having to create or modifying them if problems change.

For future development the new way is to be preferred, since it is easier to maintain problems in the single-file format.

The changes are fullly backwards-compatible, so any existing problems for which .fbd files exist should continue to work without any modifications. If a .fbd file exists, the workbench will always use that in preference to laying out the problem from the .prb file, so the old .fbd file method will pre-empt the new method in this case.

Note: The predefined variable feature, however, is currently only possible using the old method, by creating a .fbd file and editing it manually to add each desired predefined variable. It is planned to add this feature to the new method somehow but it has not yet been done.

Following describes the newer “autolayout” method only.

Extended defproblem slots
The revised method involves extensions to defproblem as illustrated by the
following example (included as testp1.cl):

 (defproblem testp1
 :statement (
"An elevator slows to a stop from an initial downward velocity of 10 m/s"
"in 2 seconds. A passenger in the elevator is holding a 3 kilogram package"
"by a vertical string. What is the tension in the string during the process?"
" Answer: [XXXXXXXXXXXXXXXX]"
)
 :times ((1 "elevator begins slowing") (2 "elevator at rest")
 (during 1 2))
 :choices ((bodies (package earth string)))
 :graphic "testp1.bmp"
 :features (working Andes2 dynamics)
 ...

1. Statement

The problem statement is a series of lines which includes answer
box markers delimited by square brackets "[" and "]". The workbench will
replace the text between the brackets with answer boxes.

You can put anything you like between the brackets. That text is never shown,
it's just padding for spacing to indicate the desired width of the box. Space
characters are not that good for this purpose because they are very narrow in
a variable-pitch font, so I used X's which are good and wide.

You can surround the answer box markers with whatever text you wish or put
more than one on a line if you like, e.g.
 "Give the final velocity in component form"
 " v = [XXXXXXXXXXXX] i + [XXXXXXXXXXX] j"
 " Neglect friction."
Two spaces before and after seems to make for decent appearance.

Note: although the example inadvertently contains a TAB character in the
problem statement, it will be better not to use TABS, but to replace TABs by
spaces.

The statement should be broken into a series of lines of reasonable length to
display in the workbench since the workbench will use the same division into
lines unchanged.

2. Times

List the time points and intervals to be used as choices. For
time points, each entry should be a pair of time point and string description.
For intervals just include the "(during x y)" as shown. Note that this list
uses the kb format for times which start at 1, so you can easily match it to
the time statements in the givens. The workbench will convert these to T0, T1
when it displays them.

You can just leave the "Times" argument out if there is only one default time
in the problem.

3. Choices

 This is a list of (choice-name choice-element-list) pairs. The
choice-names currently understood are bodies, branches, and positions. The
last two are for circuits only (and remember that bodies should contain the
list of components for circuits). So if you had more than one list it would
look like:
 :choices ((bodies (R1 R2 R3))
 (branches (Br1 Br2 Br3))
 (positions (ptA ptB ptC)))

4. Graphic.

This should be the filename of an external graphic file. This
should just be the file name (with extension) not a full path. The graphic
file *must* be placed in the C:\Andes2\Problems directory, or else an error
will occur when opening the problem.

Also new: this version of the workbench now knows how to display .gif and
.jpeg files, so you can use these formats for the graphic in addition to .bmp
and .wmf. .Gif will usually be smaller than .bmp (mspaint can save in .gif
format).

The workbench will layout the graphic and try to center it beneath the problem
statement, so the images do not have to include much white margins around the
actual drawing. If the image is excessively wide (more than 5 inches, I think)
it will shrink it to fit, which can garble the appearance (lines of one-pixel
width may disappear, for example). So one should try to design the graphics
not to be wider than this.

5. Features:
In addition to the features already used in existing problems (such as rotkin,
torque, energy, work,) etc. make sure include the following in the feature list
if they are needed in a problem: Gravitation, Vector-grid.

It will also be convenient for batch generation if all problems in a single set have some common feature. If no existing tag will do, any arbitrary tag can be included in the feature list may be included. This feature will only be used to select problems to generate by the make-prb batch generation command (see the SGG Cheat Sheet.)

To include a new style problem in a problem set:
Specify and solve it and generate a (new-format) .prb file, for example
"testp1.prb". In the problem set edit interface, when you try to add a
problem, you can now choose a .prb file (as well as a .fbd file), so just add
it to the problem set this way.

You can try generating testp1.prb and adding it to the Translational Dynamics
set to see this.

When it opens a problem from a problem set, the workbench will first check if
there is a .fbd file for it. If so, it will open that file as in the past. If
not, it will try to find a .prb file and import the problem from there. Of
course this will only work if the .prb file is in the new format which
includes this information. If the graphic file is missing from the problems
directory the workbench may report an error but should continue with no
graphic.

This way, all old problems should continue to work without change, but new
problems do not require a .fbd file at all. For the future, we might wish to
migrate old problems to the new format for easier maintenance -- in the
revised system, a change to the statement only has to be made in one place for
example. But this does not have to happen right away.

Other changes
Changes to New Problem command
[This may not affect you much] It is still possible to generate a .fbd file
for a problem in the old way if you wish. One might want to do this if for
some reason the default layout is unacceptable and one wants fine-grained
control over the layout of items. If you choose File New ... Problem in
author mode, you will now first be prompted for a .prb file to import. You can
either import this to start with (if you have a new style .prb file) or just
cancel the prompt to create the .fbd by hand.

Either way you can edit the .fbd file as before and save it.

However, the editing interface has been changed to allow for a new-style
statement specification (including answer-box markers) and for the optional
specification of an external file for the graphic, and will use its automatic
layout procedure on these. You do not have to use these at all, you can leave
them blank and use the old method. However, if you do use these entries, note
that these elements will be automatically re-layed out *every* time you OK a
return from the problem properties sheet.

New plain text .aps file format
[This also may not affect you much] this version uses a new simple plain text
file format for .aps (problem set files). So in the future you could create or
edit these with Notepad if you liked (though they must have the .aps
extension.) The new format is:

ANDES Problem Set 2
Exkt5a
Exkt10a
Exkt12a
Exs6a
Exdt10a
Exdt4a
Exdt8a
Exdr9a

The first line must be "ANDES Problem Set 2" (meaning version 2) followed by a
list of problem ids, one to a line. Case doesn't matter in the problem id.

You can of course continue to use the workbench to create and edit problem
files, but this simple format might be easier to deal with in the future.

To convert existing old-format .aps files to the new format, just open them
and write them out again using the latest workbench.

