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Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model
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We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu—
Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude
satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely
©.(x)=1 for the pion distribution amplitude, anfd®k, ¥ .(x,k, )k? =(k?)=—M(uu)/f2 for the second
moment of the pion light-cone wave function, whéfes the constituent quark mass ahgdis the pion decay
constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is
recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved.
This allows us to determine the momentum scale corresponding to our model calculation, which is close to the
valueQ,=313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The
value 0f<|2f) is, after the QCD evolution, around (400 MéV)n addition, the model predicts a linear integral
relation between the pion distribution amplitude and the parton distribution function of the pion, which holds
at the leading-order QCD evolution.
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I. INTRODUCTION neither asymptotic nor possesses the double-hump structure
[7] proposed in early workE3,49].
The study of high-energy exclusive processggrovides The pion distribution amplitude has been evaluated with

a convenient tool of learning about the quark substructure oRCD sum rule§9-14], in standard15] (only the second
hadrons. In this limit the total amplitude factorizes into amomen} and transverse lattice approaclié§—1§, and in
hard contribution, computable from perturbative QCD, and &hiral quark model$19—-29. In chiral quark models the re-
soft matrix element which requires a non-perturbative treatSults are not always compatible to each other, and even their
ment. From the point of view of chiral symmetry breaking a nterpretation has not always been the same. While in some
particularly interesting process is provided by the cases there are problems with chiral symmetry and proper

— v* 70 transition form factor. For real photons its normal- normalization[20,21,23, in other case$22-26,28,29it is

ization is fixed by the anomalous breaking of chiral symme-nOI. clear hc.)W to associate the sgale at Wh'(?h the_model IS
o . . - defined, which is necessary to define the starting point for the
try by the 7°— yvy decay. In addition, in the limit of large

photon virtualities, factorization allows us to define theQCD evolution. Nevertheless, the_re s a precise_way FO iden-
leading-twi ) ’d' Hibuti litud | tify the low energy scaleQ,, at which the model is defined,
eading twist pion distribution ampiitude as a low energynamely the one at which the quarks carry 100% of the total
matrix element whose normalization |s_f|xed by the pion - Smentum [30,30. The fact that several calculations
yveak-decay constant, a spontaneous chiral s_ymmetry breabzo,21,23_26,2}3 produce a PDA strongly resembling the
ing feature of the QCD vacuum. It seems obvious that such gqymptotic form suggests that their working scale is already
process offers a unique opportunity not only to learn aboufarge, and the subsequent QCD evolution becomes unneces-
the interplay between high and low energies, but also to Unsary, or numerically insignificant. This also tacitly assumes
derstand the relation between the spontaneous and thRat these models already incorporate the QCD radiative cor-
anomalous chiral symmetry breaking. Radiative logarithmigections.
corrections to the pion distribution amplitudeDA) can be In the present paper we compute the pion distribution am-
easily implemented through the QCD evolution equationglitude and the pion light-cone wave function within the
[2,3], which yield for Q?>— o the asymptotic wave function Nambu—Jona-Lasinio(NJL) model [32,33 in a semi-
of the form ¢ .(x,) =6x(1—Xx). Moreover, the pion transi- bosonized form using the Pauli-Villaf®V) regularization
tion form factor has been measured by the CELl4Dand, method [34]. This method has been introduced in Refs.
recently, the CLEO Collaboration§]. A theoretical analysis [35,36 in the context of chiral perturbation theory, as well as
of PDA based on these data and light-cone sum rules h&sr chiral solitons. From the point of view of the NJL model
been undertakep6], showing that alQ=2.4 GeV PDA is the study of exclusive processes becomes interesting in its
own right. Although factorization holds beyond doubt in
QCD, it is far from obvious that any of the regularization
*Electronic address: earriola@ugr.es schemes used to make a low-energy model well defined is
TElectronic address: Wojciech.Broniowski@ifj.edu.pl compatible with factorization. In addition, we want to deter-
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mine what is the low-energy scal€,, the model corre- factor by examining the asymptotic behavior for large photon

sponds to. Here we obtain it with help of the analysis of thevirtualities. This requires introducing a regularization for an

PDA and compare it to th€, obtained in deep inelastic abnormal parity process which also modifies the chiral

scattering(DIS) from the corresponding parton distribution anomaly, and hence, for typical parameter vall#s, the

function (PDF) of the pion. m%— vy decay rate is reduced by 40% of the current algebra
To a large extent our treatment of the PDA parallels thevalue. Our approach is free of such problems.

calculation of PDF carried out in previous worK37-39.

There, it has been argued that for inclusive processes, such as Il. THE NAMBU —JONA-LASINIO MODEL

in deep inelastic scattering, by far the most convenient regu- , ) . )

larization scheme is the PV method. Such a regularization FOr the reader’s convenience we briefly review the NJL

allows the extraction of the leading-twist contribution to the Mdel in such a way that our results can be easily stated. The

forward virtual Compton amplitude which possesses propepY(2) NJL Lagrangian in the Minkowski space is given by

support and normalization. The relevance of regularization in32.33

chiral quark models should not be underestimated; it is not G

evu_jem what is the most convenient way to cut-off high en- La=9(id— Mo)Q+§[(QQ)2+(QTi Ysa)?] 3

ergies in such a way that most features of QCD are retained.

Those include chiral symmetry, gauge invariance, and scal- . . -

ing properties. The main outcome of the calculation pre-Whereq=(u,d) represents a quark spinor witl, colors, 7

sented in Ref[37] was that, at the scal®, at which the &re the Pauli isospin matriced), stands for the current

model is defined, the valence PDF is a constant equal to onduark mass, ané is the coupling constant. In the limiting
case of the vanishin§l, the action is invariant under the

global SU(2)g@SU(2), transformations. With help of
bosonization, the vacuum-to-vacuum transition amplitude in
the presence of external vector and axial-vector currents,
(v,a), can be written as the path integral

9(x%,Qo)=a(1—x%,Q0) =V,(x,Qq)/2=1. (1)

After QCD evolution at leading ordefLO), impressive
agreement with the analysis of Rd#0] at the reference
scaleQ=2 GeV has been achieved. At this scale the valence .

quarks carry 47% of the total momentum. This implies a (O|T expl’iJ d4x[q(1/;+ay5)q]]|0>=J- DIDIT expliS}.
rather low scaleQg, as suggested by the evolution ratio

a(2 GeV)/la(Qq)=0.15 relevant at leading order. For The following Dirac operators:

a(2 GeV)=0.32 listed by the Particle Data GropDG)

[41], and for the evolution with three flavors, this corre- iD=i¢9—MO—(E+i75;~ﬁ)+zb+ay5,
sponds td42]

0y=313 MeV, a(Qg)=2.14 @ iDs=—id—Mo— (S —iysr I1)+6—&ys,

are introduced. The fieldsE(,ﬁ) are dynamical, internal
bosonic scalar-isoscalar and pseudoscalar-isovector fields,

the next-to-leadingNLO) analysis of Ref.[39], with the ; . e .
NLO effects small compared to the LO or{@s]. Motivated whlch after swtaple r_enormahzatlon can b_e interpreted as the
hysicalo and pion fields. The PV-regularized normal parity

by this success, in the present paper we investigate whether P . :
the evolution ratio and the valu€®) found in deep inelastic Ys-even contribution to the effective action 85,34
scattering are compatible with the values extracted from a

(see Ref[37] for detaily. The low scales are confirmed by

similar analysis of the PDA at LO in the same modsUlL) Severi= — % Z c;tr Iog(DD5+Ai2+ie)
with the sam&PV) regularization. This is the main objective !
of this work.
In the NJL model the PDA has already been estimated by - 36 d4x(32+1T1 2), (4)

several author$23,24,28. The work of Refs[23,24 uses

the Brodsky-Lepage cut-off regularization as suggested byiith tr denoting the trace in the Dirac and isospin space. In
the Ilght-front quantization formallsm._As a consequence, th"general, we assume PV subtractions, with the conditions
asymptotic forme(x,Qq)=6x(1—x) is obtained without En,ociA-zk:O for k=0, ... n, and withco=1, Ao=0. At
any additional evolution. On the other hand, the same regul-e" !

y . 5 ast two subtractionsnE2), which is the case used
larization yields the PDF of the formV,(x,Qo)~6x*(1  throughout this paper, are needed to regularize the quadratic

—x) [24,44 which is far from the asymptotic value giergence. The abnormal parityd-odd) contribution to the
XV (x,0)=x6(x)=0. This is a rather puzzling result, ofective action is

which may have to do with subtleties of introducing a regu-

larization in the light-cone quantization methdgsee also iN 5 )

Ref. [44]). For that reason we prefer to use a manifestly Sodd= — 5 {trlog(D?) — trlog(Dz);- 5
covariant formalism, where chiral symmetry can be easily

implemented in the presence of the regularization. In RefNotice that no explicit finite cut-off regularization is intro-
[28] the PDA has been extracted from the transition formduced in the abnormal parity contribution, as demanded by a
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proper reproduction of the QCD chiral anomaly. This subtle d4k
and important point has been discussed in detail in Ré]. F(p%x)=—i 2
Any mesonic correlation function can be obtained from
this gauge-invariantly regularized effective action by a suit- 1
able func_tional differen_tiation with respect to _the relevant XEi Ci [—kz—x(l—x)p2+M2+Ai2—ie]2
external fields. In practice, one usually works in the formal
limit large N, in other words, at the one-quark-loop level. 1
To fix the parameters in the PV-regularized NJL model we =— > cilogl M2+ A2—x(1—x)p?].
proceed as usuéee, e.g., Ref36]). The effective potential (4m)%
leads to dynamical chiral symmetry breaking, thereby yield- (12)
ing a dynamical quark mash], and condensates given by

The functionF in an obvious manner satisfies the symmetry
- M—M, relation F(p?,x)=F(p2,1—x). In the case of two subtrac-
(Uu)=(dd)=— —=—=4NMl3, (6)  tions, and in the limitA;,—A,=A used in this paper, we
have 3;c;f(A?)=f(0)—f(A%)+A?f'(A?). In the numeri-
cal analysis of this paper we work in the strict chiral limit,
where the quadratically divergent integrhl, is defined as ~ with My=0. The parameters are fixed as usual;, we adjust
the cutoff, A, in order to reproduce the physical pion weak-
decay constanf,.=93.3 MeV. The coupling constarfg, is

dk 1 traded for the constituent quark mad4, which remains the
|2:|f 42 ci 5 ——— only free parameter of the model. In our study of the pion
(2m)" T T (=k+M+ Al —ie) light-cone wave function we use two sets, which cover the
range used in other phenomenological applications of the
_ c( A2+ M2)loal A2+ M?2). 7 model:M =280 MeV, A =871 MeV (the case of Ref.37)),
(47)2 2| (A Jlog(Ay ) @ andM =350 MeV, A=770 MeV. These give the quark con-

densate equal to (uu+dd)=—(290 MeV)® and

] ] . ) — (271 MeV)®, respectively. As we shall see, the results are
The calculation of the relevant correlation function yields forinsensitive to the choice of parameters.

the pion mass

Ill. PION LIGHT-CONE WAVE FUNCTION AND PION

T2 21, Mg ®) DISTRIBUTION AMPLITUDE
& F(mzﬂ,) M—Mgy'

The pion light-congLC) wave function(the axial-vector
componentis defined as the low-energy matrix elemgfi]

The pion weak-decay constaifit,, and the pion-quark cou-
pling constantgqq, are given by

, iV2 B e,
VoK) == g | dEmdPg DR Tak
f2=4NMF(M2)grgq. 9 —
: " X(mt(P)|U(E™,£,) 7" y5d(0)]0),  (13)
1 d *_ 5 = i istributi i
_ 20,2 wherep~=m_ andp, =0. The pion distribution amplitude
12qu 4NCW{p F(p )}|p2:mii (10) iS deﬁned as
respectively. We have introduced the following short-hand )
notation: gpw(x)=f d?k, W _(x,k,). (14)
1 .
2y _ 2 Formally, in the momentum space, Ed.3) corresponds to
(P fo dxF(p" ), (D integration over the quark momenta in the loop integral used

in the evaluation off _, but with k¥ =p*x=m_x andk,
fixed. Thus, with the PV method and after working out the
where, in terms of the PV-regularized one-loop integrals, Dirac traces, we have to compute
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dk*dk™ 8(k*—xp™)
(2m* mMmx(1-x) 5

i 2iNMg..
R |

o

where the location of the poles in thé variable has been
explicitly displayed. Evaluating thé&™ integral gives the
pion LC wave function in the NJL model with the PV regu-
larization:

ANM G 1qq

v (x,k, )=
(k) 1673,

X2 - (16)
Ci .
T K2 AR M2 x(1-x)m2
The function is properly normalized,
| danar ook =1 7
and satisfies the crossing relation
Vo (x,K)=P (1-x,k,). (18)

For m_#0 it is non-factorizable in thé, andx variables.
Integrating with respect td, yields the pion distribution
amplitude,

g7qu

@4(X)=ANMF(mZ )=

(19

The crossing propertyp .(X) = ¢..(1—x), follows trivially
and Eq. (9) gives the correct normalization, namely

Jdxe(x)=1.

As a consequence of the PV condition with two subtrac-

tions one has, for largk, ,

cA?
¥k 4NCM22i e 0
7TX1 - H
T 1er%2 KO

which gives a finite normalization and a finite second trans-

verse moment,

1
<kf>=f dzklfodxllfﬂ(x,kl)kf. (21

In the chiral limit, m_=0, one can use the Goldberger-
Treiman relation for the constituent quarkg,qqf =M.
Thenfi=4NCM2F(O), which gives the very simple formu-
las

AN M? >

v_(x,k, )=
n(xk) 16732 4

C , 22
K2+ AP+ M2 2

ECJ
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1 1
K2+ M2+ AZ+i0" K2+ M2+ AZ+i0"
K™—m_,+ -
m m_(1—Xx) m X
(15
[
en(X)=1, (23
N M(uu)
(KD)=-"2 (24)

In the chiral Iimit\lf,r(x,lzl) becomes trivially factorizable,
since it is independent of A remarkable feature is that the
last two relations, Eq23) and Eq.(24), are independent of
the PV regulators. A similar situation has also been encoun-
tered when computing PDF in the chiral limi&7]; it was a
constant equal to one, regardless on the details of the PV
regulator. We will show below that by putting together Eq.
(23) and the results of Ref37] an interesting relation fol-
lows.

Higher transverse moments diverge if one restricts the
number of Pauli-Villars subtractions to two, but Eg3) and
Eq. (24) remain still valid if more subtractions are consid-
ered.

In Fig. 1 we show the&k, dependence of the light-cone
pion wave function in the chiral limitfinite pion mass cor-
rections turn out to be tiny, at the level of a few) %or the
PV regularization with two subtractions, and with
=380 MeV and 350 MeV. For these values we get the trans-
verse moment(k?)=(625 MeV), and (634 MeVj, re-
spectively. This value is about a factor of two larger than the
one found in Ref[25], namely (430 MeV3, and a factor of
four higher than the findings of Ref48], (316 MeVYy, at

0 200 400 600

k, [MeV]

800 1000

FIG. 1. The pion light-cone wave function in the chiral limit,
evaluated in the Nambu—Jona-Lasinio with the Pauli-Villars regu-
larization with two subtractions and with the constituent quark mass
M =280 MeV (solid line) and 350 MeV(dashed ling plotted as a
function of the transverse momentum . The wave function does
not depend orx. The normalization is such thgid?k, ¥ _(x,k,)
=¢.(X)=1. The second transverse moment i(sIZf)=
—M(uu)/f2=(625 MeV) for M =280 MeV and (634 Me\A for
M =350 MeV . The scale relevant for the calculation, as inferred
from the QCD evolutiorf37], is Q=313 MeV.
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the scale at whicla/7~0.1, i.e.Q~1—2 GeV. As we shall 2  2n+3
see below, a part of the discrepancy can be attributed to the an(Q)=3 N+ 1)(n+2)
QCD radiative corrections.

In non-local versions of the chiral quark model, where a 1 i
momentum-dependent mass function is introduced as a X fo dxCYA2x—1)¢.(x,Qo), (27)
physically motivated regulator, the trend to produce a con-
stant PDA has also been observed if the constant mass limg;i, ¢3/2 denoting the Gegenbauer polynomials, and
is considered20,21,23. In those models such a limit effec- " '

a(Q) | 7 2o
CY(QO))

tively corresponds to removing the regulator, against the 2 nt14

original spirit of the model. Unfortunately, for the genuine yf]o):—ZCF[3+ | ——— ) —}
non-local case those calculations violate proper normaliza- (n+1)(n+2) k=1 K

tion of the PDA, because the employed currents do not com- (28)
ply with the necessary Ward identities required by chiral _ 1_1 _E

symmetry. The problem has been addressed in [, 03 A 3R

where it has been found that about a third of the normalized ' _
PDA comes from the non-local currents. For a Gaussiawith Ca=3, C¢=4/3, andNg being the number of active
mass function there is a clear flatteningef(x) in the cen-  flavors, which we take equal to thrgg&0]. With our constant

tral region of 0.2x=<0.8[29]. amplitude(25) we get immediately

We stress that our result, E@®3), holds true without re- .
mqving the Pauli-yillars regulgtor an.d is in harmony with f dxC?n/z(Zx—l)@ﬂ(x,Qo):l. (29)
chiral symmetry, since the starting point was the normal par- 0

ity action, which by construction preserves chiral symmetry.

Obviously, the fact that our final answer does not depend offhus, for a given value o we may predict the PDA. We

the form of the PV regulators used makes any subsequemeed, however, to know what the initial scal, is, or,

manipulation with the regulators fully irrelevant. equivalently, to know the evolution ratio= a(Q)/a(Qy).
Another point is that the PDA from E@23) and the PDF  The fitting procedure of Ref6] yields a,(2.4 GeV)=0.12

from Eg. (1) yield the relationg (x)=V ,(x)/2 valid at a  =0.03 (with the assumptiom,=0, k>2). We treat this as

low scaleQ,. It is noteworthy that in the framework of QCD experimental input, and then with help of E¢87), (29) we

sum rules the same identity between the PDA and PDF haget for the evolution ratio

also been obtainefill] at some scale, although there the

asymptotic form for the PDA was assumed without the QCD a(Q=2.4 GeV)/a(Qp) =0.15+0.06, (30)

evolution, while the PDF was obtained by QCD evolution. . o .

We will show below that if evolution is undertaken for both Which at LO impliesQ, =322+ 45 MeV, a value compatible

the PDA and the PDF at the same low energy scale, an oveWithin errors with £q.(2). .
all consistent picture arises. The fit of Ref.[6] with non-zeroa, yields a,=0.19

+0.04+0.09 and a;,=-—0.14+0.03+0.09. The central
value ofa, would imply, according to our prescription, the
IV. QCD EVOLUTION evolution ratio of 0.31, and, correspondinglyQg
=0.47" 535 GeV, a much larger central value th&®), but
The comparison of the leading-twist PDA to high-energywith very large errors. For that reason, in the numerical stud-
experimental data requires, like for the PDF, the inclusion ofes below we use the valu80) for the evolution ratio.
radiative logarithmic corrections through the QCD evolution We can now predict the following lowest-order coeffi-
[2,3]. For the pion distribution amplitude this is done in cients:
terms of the Gegenbauer polynomials, by interpreting our
low-energy model result as the initial condition. For clarity ay(2.4 GeV)=0.044+0.016

we work in the chiral limit, hence
ag(2.4 GeV)=0.023+0.010

_ 31
¢#(X,Qo)=1. (29 ag(2.4 Ge\)=0.014+0.006 o

Then, the LO-evolved distribution amplitude red@s3] a;o(2.4 Ge\)=0.009+0.005.

© For the sum of the Gegenbauer coefficients we get the esti-
ea(xQ=6x(1-x) X ' CIA2x-1)ay(Q), (26) Ma®
n=0

.y L ¢.(xQ=24 GeV
o _ > a)(Q=2.4 GeV= | dx -
where the prime indicates summation over even valugs of n-2 0 6x(1—-X)

only. The matrix elements,,(Q), are the Gegenbauer mo-

ments given by =0.25+0.10 (32
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2 - - - Y One might worry that the starting conditig@5) does not

- S — i nAi ol .
, (EXS'X) (Asmltoﬁc F;esu“; : satisfy the end-point vanishing behavior and therefore cannot
¢ 1]

EIRITY) p— - | be expanded in terms of the Gegenbauer polynomials. This is

true, provided one insists on uniform pointwise convergence.

However, the Gegenbauer polynomials form a complete set

in the space of square-summable functions, hence conver-

5 PR gence may be understood in a weak sefisd. The slow

Q" =5.8GeV convergence is reflected by the fact that in Fig. 2 at least
“\ ] 30-100 Gegenbauer polynomials are needed for evolution

o (x, Q)

05

; \ ratios r=0.9—0.21, respectively. The convergence at the
o E . . . . mid point,x=1/2, is improved, since the series fe(x,Q)
0 02 04 06 08 1 is sign alternating. At the end points=0,1, the series di-

X verges, sinceC3(+1)=%(2k+1)(2k+2), which means
that the convergence in E(R6) is not uniform. In order to
evolved to the scal®?= (2.4 GeVY. The two values for the evo- analyze the b(_ahavior close to th_e e_nd points in a greater
lution ratio r = a(Q)/a(Qy) reflect the uncertainties in the values detail we consider the large-contribution to Eq.(26). We
of Ref.[6] based on an analysis of the CLEO data. We also shov\have
the unevolved PDA,¢.(X,Qp)=1, and the asymptotic PDA,

@ -(X,0) =6X(1—X).

FIG. 2. The pion distribution amplitude in the chiral limit

Q) | 1280
- o — = —n~(4Ce/Ba(Q)/a(Q)] (35
where the uncertainties correspond to the uncertainties in Eq. a(Qp) ’
(30).
The leading-twist contribution to the pion transition form
factor is, at the LO in the QCD evolutidri], equal to hence, forQ—Qq, Q>Q,, and withx—0 (recall that the
5 function is symmetric undex— 1—x), we obtain
F * o 1 X
Q°Fyr my(Q) :f e 2xQ
2f . . o 6X(1—x)
twist-2
(x0.0)—8x¢ 2oE | Q) (36
The experimental value obtained in CLH®] for the full O ’ 2Bo  a(Qo) ’

form factor is QZFV*'M(Q)/(Zfﬁ):OBSi 0.12 at Q?

=(2.4 GeVY. Our value for the integral, 1.250.10, over-

estimates the experimental result, although at thevhere{(z)=X,_,n *is the Riemann function, and(1)
20-confidence level both numbers are compatible. Taking==7_,n~1=c. Thus the slope of the evolved PDA at the
into account the fact that we have not included neither NLOend points becomes steeper and steep&@-a<Q,.

effects nor an estimate of higher-twist contributions, the re- The QCD evolution also influences the value of the trans-
sult is quite encouraging. verse moment. According to the work of RE48], (k%) can

In Fig. 2 we show our PDA evolved Q=2.4 GeV, for T 2
two values of the evolution ratio, which reflect the uncertain—be expressed as (Kki)=5my/36, where  mg

ties from Eq. (30). We also show the initial and the =(do*’F,,a)/(qq) is the ratio between the quark-gluon
asymptotic PDA. It is interesting to note that after evolutionand quark condensates. The quantity is scale dependent
our results closely resemble those found in transverse latticand has been estimated to b§(1 GeV)=0.8+0.2 GeV
approache$16—18. In particular, we get for the seconid  [52]. Using the corresponding anomalous dimensions, 4 for

moment ¢=2x—1), (qq) and —2/3 for (qo**F ,,q) [53], yields

(8= foldX<pw(X,Q=2.4 GeVj(2x—1)?

<k12_>Q (af(Q) )(4+2/3)/B0

=0.040+0.005, (34) (K2)q, '*(Qo)
to be compared witl£2)=0.06+0.02 obtained in the stan- _[ Q) 14/(33-2Ny) -
dard lattice QCD foiQ=1/a=2.6+0.1 GeV|[15]. From the a(Qq)

PDF calculation at LO of Refl.37] we estimate that if the

momentum fraction carried by the valence quarksQat

=2 GeV is 0.470.02%, thenQq is such thata(Qq) For Ng=3 this scale dependence can be seen in Fig. 3. For
=2.14, and the evolution ratio @ =2 GeV isr=0.15. the valuesQ=1-2 GeV one gets a reduction factor of
Then, forQ=2.4 GeV we getr =0.14 from the analysis of 0.37-0.45 for the ratio (37), and <kf)Q=(430 MeV)y?

the PDF, a value compatible, within uncertainties, with the— (380 MeVY for the second transverse moment, somewhat
present calculation, E¢30). This is a crucial finding, show- higher than the QCD sum rules estimate based on [RE&f,

ing the consistency of the results obtained in our approach(316 MeVYy or on Ref.[52], (333+40 MeV)>?.
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e-(x,Q) Jl
0 BX(1—x) 1= . dyK(x,y)V.(y,Q), (41
0.6 where the kerneK is independent 06?, and is given by
0.4 o0
2n+3
— ! 3/2 _ n
0 K(x,y) ngo 3ty Cn XLy (42
0 0.5 1 15 2 25 In general, the relatiotd1) holds in any model where the
Q[GeV] PDA and the PDF are simultaneously equal to unity at some

scaleQg, and are subsequently evolved at LO. Physically,
FIG. 3. Dependence of the second transverse moment of thEq. (41) simply tells us that the departure of the PDA at a
pion light-cone wave functionk?)q/(k?)q, (solid ling), the sec-  given Q2 from the asymptotic form is proportional to a
ond Gegenbauer moment(Q)/a,(Qq) of the pion distribution  weighted integral of the PDF at the san@ Clearly,
amplitude (dashed ling and the evolution ratio = a(Q)/a(Qo) 0. (x,Q)—6x(1—x) if V_(x,Q)—248(x) or equivalently
(dotted ling, plotted as functions of the scalg The leading-order xV,(x,Q)—0 sinceK(x,0)=0. Roughly speaking, in the
QCD evolution is applied. All quantities are rt_elative to their values present model the pion distribution function is as close to the
at the low energy scal&,=313 MeV, at which the momentum 55y mptotic value as the non-singlet parton distribution. A
fraction carried by the quarks equals uni§7], according to the  oparkaple feature of relatiofdl) is that it binds matrix

prescription that in a quark mod€l, is defined by the condition elements related to exclusiV®DA) and to inclusive(PDF)
(XV.(X,Qg))=1. In our modela(Q,) =2.14, a,(Q,) =7/18, and processes.

2\ _ .
ﬂ‘gé%ogﬂ(ffs l\(/jle_V)ihforhM |;7__8(_)tMev and (634 MeVj for M In order to evaluate the kernel we use the symmetrized
= eV and in the chiral fimit. generating function of the Gegenbauer polynomials,

V. THE RELATION TO DEEP INELASTIC SCATTERING

As we have already stated in Ed), the valence PDF for G(x,y)= >, C¥2x— 1)y”=E{R13’2+ RZ¥—1
the pion in the chiral limit has also been found to be a con- n=0 2
stant equal to ong37]. At LO the non-singlet evolution of (43
the PDF moments is quite similar to that of the Gegenbauer R.=172(2x—1)y+Yy?,
moments of PDA, Eq(26), namely, -

whence one can obtain

(0)
a(Q) )vn /(ZBO)fl

fldxx”VW(x,Q)=< dxx'V .(x,Qq)
0

a(Qo) 0 ) Lo
2 a(Q) yﬁ]o)/(Zﬁo) K(va): §G(X.Y) - 3_sz0 dY'Y'G(X,y')- (44)
“nrl a(Qo)) | 9
The integrals can be worked out to yield the final result
Thus, forn=2, one obtains
2,(Q)  (V,(xQ) [ a(Q) |7k K(X,Y) = ——gs———{8(x~1)xy?
82(Q0)  (V(%,Q0)) _(a(Qo)) - (9 AR

TR [(2x=1)y—1]
For Ng= 3 this scale dependence for the ratios can be looked
up in Fig. 3. Using x?V .(x,Q,) ) = 2/3 (the operational defi-
nition of Qy) anda,(Qg) =7/18 yields +R¥2[1-8(x—1)xy?]}—(y——Yy). (45

+2RY2 (x— 1)xyq1—2(2x— 1)y +y?]

LQ)Il (40) To test the success of E¢41) we need some input for
(xV.(x,Q)) 12 V._(x,Q). However, taking into account the fact that the
agreement of the evolved valence PDE,(x,Q) with the
hencea,(2 GeV)=0.12+0.01 for(x?V,)=0.20+0.01[40]  parametrization of Refl40] at Q?=4 Ge\? is almost per-
anda,(2 GeV)=0.10+0.01 for(x?V,)=0.17+0.01[54]. fect[37,39, and that the results are almost insensitive to the
One can combine Eqsl),(23),(26),(38) to obtain the fol-  evolution ratio,a(Q)/a(Qy), Fig. 2 can be regarded as a
lowing very interesting LO relation that holds in the consid- direct prediction of Eq(41) taking Ref.[40] as input for
ered model: V.(x,Q). A further consequence of Eg¢4l) may be ob-
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tained by integrating with respect toand performing the we find that in the chiral limit the pion distribution ampli-
sum ovem. Through the use of Eq32) we get tude, computed as a low energy matrix element of an appro-
priate operator, is a constant equal to apg(x) =1, and the
o N second transverse moment of the pion light-cone wave func-
> an(Q)zJ' dyx(y)V.(y,Q) (46)  tion is (k?)=—M{(uu)/f2, with M denoting the constituent
n= 0 quark mass. Both results are independent of the particular
form of the Pauli-Villars regulators used. After the QCD evo-
lution of the pion distribution amplitude to the experimen-
. tally accessible region we find a result still rather far away
1 , 2n+3 from the asymptotic forme ,(x) =6x(1—x), but in a good
K(y)= fo dxK(x,y)= Z 3(n+2)” agreement with the analysis of the experimental data from
the CLEO Collaboration. We can determine the working mo-
mentum scale for the model to lig,=313 MeV, a rather
3y?+1  [log(1—y)+log(1+y)] low value. Moreover, the scal@, obtained in this work is
6(1—y?) + 6y2 . (47) compatible, within experimental uncertainties, to the value
obtained from the previous analysis of the parton distribution
Notice that, forQ—o we getV_(x,Q)—25(x) and since functions, carried out within exactly the same model. At the
K(y)=7y¥12+ O(y*) one gets3%’,a,(Q)—0, as ex- scaleQg thg quarks carry all the momentum of the pion. OL!r
pected. Finally, using the parametrization of HéD] we get value obtained for the second transverse moment of the pion

where

[55] light-cone wave function{k?), becomes, after the QCD
evolution, not far from the estimates based on the QCD sum
" rules. Finally, we have also derived a model relation which
E " a,(2 GeV)=0.25+0.03, (48) _blnds the de_parture of the_plon d|s.tr|but|.on ampll'.cude from
n=2 its asymptotic value to an integral involving the pion quark

distribution function. The relation, specific to the feature of
a value perfectly compatible with Eq32) although with  our model that at the scal®, both the PDA and PDF are
smaller uncertaintie$56]. Again, this verifies the consis- constant and equal to unity, has been successfully checked
tency of our approach. against the available data.
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