PHY 201/181 Lab Instructor notes
Lab 10: Accoustics Demonstrations
Fall 2001

1. Sometimes the physics program won’t make plots. I haven’t determined
the cause of this problem. Try logging out and in again. (This worked in
the one case I had)

2. The program requires a number in decimal notation “0.333333” not “1/3”

3. The remainder is from Dick South. ..

I incorporated the double tuning forks to demonstrate beat
frequencies; they are stored in the back of the demo cart. I used the
oscillator-scope-amplifier equipment on the cart to run many of the
demonstrations. The keyboard is convenient for demonstrations of
combining frequencies for chords and the concept of octaves. I used
the guitar to point out the chromatic factor, 1.0595, in the layout of
the frets. It is also useful in demonstrating the doubling of
frequency by halving the string length (thus, the fundamental
wavelength) by plucking the string, then plucking it with another
finger lightly touching the middle of the string, eliminating the
fundamental frequency. The keyboard and guitar are stored in my
office, available for your use if you so desire.

I replaced the former ADC conversion of generator sine, square,
triangular signals with a computer simulation. The program
FOURDEMO.EXE is stored on the c: drive of the laptop in Leila’s
office. I projected the output onto the screen in the lab during the
third topic on timbre. It uses simulations of several common waveforms
to run the FFT analysis, and it includes the former version of the
waveform synthesis algorithm that the students now use in the last
part of the experiment. I was able to use a meter stick on the screen
to measure the amplitudes on the Fourier frequency display to make
charts on the board of the relative amplitudes, showing the 1/n (odd)
sequence for the square wave, and the 1/n2 (odd) sequence for the
triangular wave. This leads nicely into the recipes in the manual for
the waveforms that the students generate at their computers.

To demonstrate phasing, the problem that leads to alternating sign
series for the triangular waveform, I included a simulation

for a "pulse" waveform. It gives, for the eight 45( segments

of the cycle, amplitudes proportiomal to: 0, 1, 1, 0, 0, -1,

-1, 0. This gives the same 1/n (odd) coefficient set as the
square wave, when the amplitudes are displayed without phase,

but the phasing is different. Another menu option for the



program permits the sines to be displayed separately, showing
that the 1/n (odd) coefficients have signs: +, -, -, +, +, -,
-, +, +, etc., compared to the uniform positive coefficients
for the square wave.

I was not happy about the display for the cosine terms, which should
have strictly zero coefficients for an odd function. The cosine
coefficients are a few percent of the sine coefficients. The display
system is confusing, because the PLOTTER procedure that I used scales
the plot to fill the whole screen. If you examine the scale factors
in the lower left corner of the plot, 4/-2 for example, the first
number is the power of 10 that should be used to multiply the Y
coordinates to get the true scale. The number is smaller on the cosine
plot than on the sine plot, showing that the cosine coefficients are
very small. Since the first lab, I have tweaked the recipe for the
waveforms to improve their conforming to odd function behavior. I
also added a fourth waveform, the ramp, in anticipation of its use in
the student exercises. All four of the canned waveforms available in
the program are odd functions. This improved version is named
FOURDEMT.EXE, and I will put it on Leila’s computer for your use, if
you want to use it.

Details for using Leila’s computer and projector cart are as follows.
The laptop takes forever to boot, and it gives a "bad command"
warning, which persists for a long time. However, if you wait long
enough, it all clears up to give the WIN98 screen. I would suggest
that you check this out ahead of time; when I used it, the message did
not clear up, and it turned out that the computer thought it had a
second CD drive which was not responding. Leila fixed it, and I hope
that it stays fixed. To use the program, use the sequence START, RUN,
C:\FOURDEMO (or FOURDEMT). When the Proxima projector is connected to
the laptop, use FN-Fb5 to share the screen with the projector.

I congratulate Brett on the beautiful plots printed by his printer
module. I do not know how he obtained continuous graphs for the
Fourier syntheses, compared to the point plots that I have obtained in
the past. Some students complained that the graphs never appeared and
would not print. I suggested to students that they might carry the
Fourier recipes out to as far as the 19th coefficient, to see improved
graphs; those who did not so choose still got nice plots.

Acoustics demonstrations; scripts for Physics Lab
I. The role of intemsity

The intensity of the pressure fluctuations that we call sound



corresponds to a key attribute of our hearing. High intensity gets our
attention, and we call it loudness. However, the relationship between
intensity and loudness is not as simple as it might first appear. For
all wave motion, intensity varies with the square of the amplitude of
the oscillations. The ear is exquisitely sensitive to small
intensities, but it is able also to handle large intensities without
discomfort. The range of intensities, from the smallest detectable to
the normal ear, to that which would cause permanent damage, is about
twelve decades. It is hard to imagine a lab instrument that serves
over such a wide range of values!

It is hard to imagine how our language would even describe such a
range. A demonstration will show how this problem is met.

Use the oscillator and scope to set the following amplitudes at about
1000 Hz, turning on the speaker amplifier after each amplitude
setting to let the audience sample the loudness of the

tone. Ask them to rate their perceptions of the set of five

samples. 2 cm, 2.8 cm, 4 cm, 5.6 cm, 8 cm Does the loudness

seem to increase in a regular pattern? Would we be satisfied

to have the five sounds graded as increasing in regular,

linear, increments? Note that the intensity of the sound has

been doubled with each new tone.

If we sense an ordinary arithmetic increment, when the intensity has
actually been progressing geometrically, then our ears perform

a logarithmic transformation. The quantity often used to

define loudness is SPL = 10 logl0(I/Io), where Io is the

intensity at which sound is no longer heard, 10-12W. We need

to do a couple of practice problems to illustrate calculating

SPL from intensity, and vice versa.

How well we hear tones depends also on the frequency. The ear is most
sensitive to middle frequencies, in the range of 1000-2000 Hz, and
gradually less sensitive at higher and lower frequencies. The
Fletcher-Munsen curves display this for a range of intensities. Note
that, for very loud sounds, the loudness is perceived as fairly
uniform over a broad range of frequencies. As the loudness decreases,
the ear retains high sensitivity at the center frequencies, but less
at the low and high frequencies. What seems to be a good balance at
the live rock concert becomes distorted on a recording of the concert
when it is played at lower volume: the bass and treble tones are too
weak. Boosting the bass usually satisfies the listener. The missing
treble tones do not seem as noticeable, but they become troublesome in
a less obvious way, as we will demonstrate later.



What are the long-range effects of exposure to loud sounds? It would
appear to be a universal truism that the acuity of hearing diminishes
with age. Some studies correlate the damage with exposure to
excessively loud sounds. One study suggested that primitive aged
people living in environments where loud sounds are rare maintain
their hearing much longer than those privileged to be exposed to chain
saws and rock concerts. The mechanism for the damage is probably a
thickening of the ear drum, not unlike the callusing of a farmer’s
hands. It is typical to find that the highest frequencies are lost
first. Suppose we demonstrate the range of frequencies at which the
class can hear.

Dial a sequence of frequencies from 40 Hz, doubling and asking for a
show of hands if the sound is heard, then shifting to 2000 Hz
increments at 8000 Hz, and 1000 Hz at 15000 Hz. I usually remark at
about 9000 Hz that I hope the group is enjoying itself: my perception
has disappeared at that point.

So, who cares if we lose the higher frequencies? It is rare that any
musical instrument plays a note above 2000 Hz, and the pitch of human
speakers is well below this range. What are we losing? The answer will
come in the third of today’s topics.

The effect of flattening the intensity sensation in hearing is that
humans do not discern small changes in intensity very well. However
the positive aspect is that we process information well at a wide
range of intensities. If I stand beside a student while talking to
the whole class, his ear may be two feet from my mouth, while someone
in the rear of the room is 20 feet from me. Given the inverse square
rule for diluting a spherical wave, the person in the back receives
only 1% as much energy as the person in the front! If I am giving $100
to the near person, I am giving $1 to the far person, and that doesn’t
seem fair. One would expect that either the person in front is
experiencing great pain, or the person in the back is struggling to
hear what is going on. Instead, we all process the same information
comfortably. In architectural terms, it would be an interesting
problem to try to place each of 2000 people in the audience of a
concert hall exactly 80 feet from the orchestra. Instead, the people
in the cheap seats in the peanut gallery seem to be able to enjoy the
symphony just as much as those seated in front.

The sensitivity of the ear is truly phenomenal. It has been suggested
that, if our ears were any more sensitive, we would be inundated with
the roar of the red blood cells colliding with the wells of the blood
vessels. The ear is even more amazing when we examine the design

aspects for building such an instrument. It is a well known aspect of



wave transmission that vibrations encountering an interface with a
very different density are mostly reflected, with very little energy
passing the interface. For human hearing, the transmission medium is
the air, and the receiving medium is protoplasm, with a density 1000
times as large. Sound should simply bounce off, with very little of
its energy available to trigger any detecting devices. This is a
classical example of impedance mismatch. For example, when you get a
flat tire, you certainly have enough muscular energy to 1lift the
corner of the car, but your muscles do not seem to up to the

task. However, with a lever (or a jack), you can trade distance of
exertion for intensity of exertion, and the car is lifted. The ear
presents itself as a low density interface by using a thin membrane
with high compliance, coupled through a series of levers that convert
low force - large displacements in the air to large force - small
displacements, suitable for triggering biochemical changes in the
inner ear. How was evolution clever enough to think up all this?

IT. The role of frequency

Human hearing is very sensitive to changes in frequency. Below about
20 Hz, we perceive a buzzing sound; from 20 to 20000 Hz, each
frequency gives us a distinct impression of tone, and above 20000 Hz,
we longer detect the sound.

Listening to two sounds with only slightly different frequencies is an
interesting, if familiar, experience. We have two tuning forks that
can be tuned to the same or slightly different frequencies. What is
your impression of the effect?

We have seen that there is a logarithmic interpretation in our
perception of the intensity of sound as loudness. There is a similar
interpretation for the human perception of frequency.

Different frequencies of vibration are sensed as different pitches or
musical notes. We get an interesting result when we examine several
notes, each of which has double the frequency of its predecessor:
[keyboard] A(110), A(220) , A(440), A(880). There is a sense in which
these notes seem the same. If we play them all simultaneously, they
blend so completely that we conclude that nothing interesting has been
added beyond what we would have by hearing only one of the tones.
Making a chord in this manner is like making warm water by adding hot
to cold.

If doubling the frequency leads, in a cycle fashion, to repeating what
we have heard before, a geometric doubling of frequency corresponds to



an arithmetic increase in what we call pitch. Such is a logarithmic
progression. Many modern musical instruments are designed to generate
equally spaced pitches in such a way as to divide one doubling of
frequency ( an octave) into 12 equal intervals, called chromatic
half-tones. Each new higher pitch differs in frequency from its
predecessor by a fixed factor. If this factor multiplies a starting
note twelve times, we arrive at the octave note, which sounds pretty
much like the note on which we started. The factor required is omne
which accumulates the effect of doubling after 12 applications, and it
is the twelfth root of 2 = 1.0595; multiplying a frequency by this
factor generates the next tone available on the keyboard.

It is of interest to consider what we perceive when we hear several
pitches simultaneously, each arising from its own independent
oscillator. Some combinations are pleasing, while others are
grating. Some combinations occurring as a progression in time seem to
convey a story or a development of emotions. It is interesting to try
combining some tones that have a simple relationship in their
frequencies. In particular, let us examine combining notes which are
integer multiples of some starting frequency, such as 110 Hz.

Frequency Half-tones Half-tones to first octave equivalent (subtract
12, 24, 36,...)

110 0 0A

220 12 0A

330 19.01955 7.01955 E

440 24 0 A

550 27.86314 3.863136(=4) C#

Rejecting two of the A tones, which all sound about the same, keeping
the central A(220), and using the octave equivalents of the other two
notes which place them closer to the chosen A, the chord that
approximates combining the five integer frequency multiples is A, C#,
E, called the A major triad. The major chord is the work horse of
western harmonies. It is interesting without being

overwhelming. Psychologically, it conveys a sense of well being. "God
is on His throne; all is well with the world." There’s plenty of food
in the pantry; the kids are all doing well.

Contrast this with the following slight modification, which totally
upsets the simplicity of tones combined in integer multiples of
frequency. Our major chord combined the fundamental note, A, with
another that is four half-steps up, C#, and another which is three
half-steps up from there, E. If we leave the A and the E as is, but
lower the middle C# one half-tone to C, the progression becomes three



half-tones followed by four, instead of four followed by three.

The resulting minor chord, A, C, E has a very different psychological
impact. I can’t meet the mortgage; my wife has left me; the kids are
all on drugs.

If we try uniform half-tone progressions, rather than uniform
frequency progressions, the result is even more bizarre. Choosing
four notes, each three half-tones higher than its predecessor, the
resulting diminished chord, A, C, D#, F#, really gets your attention!
It feels like something the dentist would use to remove plaque. We
would not sit still for a symphony that used only such combinatioms.

Other combinations lead to families of progressing chords: C,E,G, then
F,A,C feels as if it is going somewhere; adding G,B,D,(and F) leaves
us dangling, waiting to get back to C,E,G.

Such regular combinations seem to be inherent is the way we interpret
tones used in music. The idea of combining notes with integer
multiples of frequencies will come up again in our next topic, the
quality of sounds. (Ten minute break)

ITII. The role of quality (timbre)

So far we have found a physical basis for two obvious aspects of the
sense of hearing: loudness and pitch. Our third topic is more subtle,
but no less important. We will examine a simulation of three different
sound sources, all with the same loudness and pitch. What is your
impression as to how they are different?

Use the oscillator at about 110 Hz. Amplify the sine wave, then the
triangular wave. Switch between them several times. Then compare the
sine and the square wave. The use of a low frequency makes the effects
of the overtones striking, especially in the square wave, because they
fall in the ear’s most sensitive range. As a variation, try it with
500 or 1000 Hz first, to hear much milder overtone effects.

Could you be convinced that there is something extra being added to
the sine sound to make the other sounds? How could we isolate what
has been added to give these new qualities?

There is a mathematical technique, ascribed to Joseph Fourier, that
suggests that any periodic function, no matter how bizarre its form,
can be represented as an infinite sum of sine waves. This might seem
general enough to be true if we were allowed to pick from all sine
waves, but this theorem lays out a special, restricted set: sine waves



that have frequencies that are integral multiples of the fundamental
tone. Each of these new sine waves is to be added into the mixture
with a particular amplitude. (It also is assigned a particular phase,
but we will assume that this is not important for our present
examples.)

To describe a 110 Hz triangular wave (or square wave) we start with a
110 Hz sine wave, then add to it measured amounts of the multiple
frequencies: 220, 330, 440, 550, ... This sounds a little like the way
we made a major chord, with integer multiples of a starting

frequency. Then why do we not near a chord, rather than a single sound
with a new quality? The difference is that these oscillations are
locked precisely in phase and amplitude. Independent oscillators drift
out of and into phase, allowing the ear to detect different sources
when we play a chord. The Fourier series mixture controls the phase
precisely.

We will now use a demonstration program to analyze some common
waveforms for the coefficients of their frequency spectrum.

Use FOURDEMT to display and transform the square and triangular
waveforms, tabulating on the board the centimeter heights of the 1, 3,
5, 7, 9 peaks, measured with a meter stick on the screen. Have the
students normalize the heights, by dividing all of them by the first,
to get values such as 1.00, 0.33, 0.20, etc. If you examine the pulse
waveform, the amplitudes are the same as for the square wave, but the
sine display demonstrates that half of the coefficients are

negative. This should prepare them for the directions in the manual
for trying alternating-sign term syntheses, as required to form the
triangular wave. The ramp waveform can be displayed and named to help
them identify the result they will see when they do the final 1/n
synthesis. You may or may not want to display its frequency graph.

To return to some unfinished business: who cares if, after the abuse
of enough chain saws and rock concerts, we do not hear frequencies
above 2000 Hz? Is it important to you to be able to distinguish an
oboe from a violin? Is it satisfactory for you that all people’s
voices sound the same, and you cannot distinguish who is phoning from
just the voice? Will you be comfortable when, in talking to someone
who is 3 feet away, you notice that the person has perfect diction,
but across the room, the person has a lisp, and the sounds of s, sh,
and th all become indistinguishable? After a while, without the
feedback of your ears, you will be the one with the lisp. Will your
spouse be delighted to have you turn up the TV volume to maximum while
she is trying to sleep in the next room? Will it bother you that,
while you can carry out a reasonably intelligent conversation with



men, women’s voices become impossible to follow? Will you be happy
telling the five-year-old grandchild to go away because, try as hard
as she will, she cannot make you understand anything? I can testify to
these things: it’s a bummer! I highly recommend protecting your
hearing.

You will now try to synthesize these waveforms by adding together sine
waves by your own recipe on the lab computers. There will be a
surprise in the last part: we have largely neglected phasing in our
discussion, and one of these waveforms requires that successive
non-zero terms receive alternating + and - signs (equivalent to 0 and
180 degrees of phase) when we try to synthesize it from sine

waves. (The recipes given in the manual now guide them through exactly
what coefficients and signs to use. I suggested that they try more
coefficients - out to 19 - to get better graphs, but his is not a
necessary variation.)

If the demonstration program (FOURDEMT) appears to be a plausible
temporary substitute for real signals from an ADC, a C variation of it
could be generated in the future for student use on the Linux
computers, instead of having it as a demonstration.



