Here are the eigenvalues for the constants: {mub, muf, g2, kappas, kappaa, beta, lambda1, lambda2, lambda3, lambda4, lambda5} = {0.1803, 0.362, 1, -0.323, 0, 0, 0, 0, 0, 0, 0} K = 3 and two links with masses g^2, and Kappa_S, nonzero In[31]:= expr = N[generalMatrix[makeham, 3, 2, 0, 1, {0.1803, 0.362, 1, -0.323, 0, 0, 0, 0, 0, 0, 0}, none]]; In[32]:= Sort[Chop[Eigenvalues[expr]]] Out[32]= {0.417543, 0.417543, 0.417543, 0.417543, 1.49755, 1.49755, 1.49755, 1.49755, \ 1.49755, 1.49755, 1.49755, 1.49755, 1.49755, 1.49755, 1.49755, 1.49755, \ 1.64288, 1.64288, 1.64288, 1.64288, 1.69473, 1.69473, 1.69473, 1.69473, \ 1.78998, 1.78998, 1.78998, 1.78998, 1.78998, 1.78998, 1.78998, 1.78998, \ 1.78998, 1.78998, 1.78998, 1.78998, 2.17546, 2.17546, 2.17546, 2.17546, \ 2.3012, 2.3012, 2.3012, 2.3012, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, \ 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, \ 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, \ 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, \ 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.57181, 2.70822, \ 2.70822, 2.70822, 2.70822, 2.70822, 2.70822, 2.70822, 2.70822, 2.70822, \ 2.70822, 2.70822, 2.70822, 2.93413, 2.93413, 2.93413, 2.93413, 2.96657, \ 2.96657, 2.96657, 2.96657, 2.96657, 2.96657, 2.96657, 2.96657, 2.96657, \ 2.96657, 2.96657, 2.96657, 3.41035, 3.41035, 3.41035, 3.41035, 3.41035, \ 3.41035, 3.41035, 3.41035, 3.41035, 3.41035, 3.41035, 3.41035, 3.69949, \ 3.69949, 3.69949, 3.69949} These are the diagonal matrix elements In[33]:= diag = Table[expr[[i, i]], {i, Length[expr]}] Out[33]= {1.60012, 1.60012, 1.60012, 1.60012, 1.61194, 1.61194, 1.61194, 1.61194, \ 1.60012, 1.60012, 1.60012, 1.60012, 2.14489, 2.14489, 2.14489, 2.14489, \ 2.14489, 2.14489, 2.14489, 2.14489, 2.86954, 2.86954, 2.86954, 2.86954, \ 2.86954, 2.86954, 2.86954, 2.86954, 2.14489, 2.14489, 2.14489, 2.14489, \ 2.14489, 2.14489, 2.14489, 2.14489, 2.86954, 2.86954, 2.86954, 2.86954, \ 2.86954, 2.86954, 2.86954, 2.86954, 2.14489, 2.14489, 2.14489, 2.14489, \ 2.14489, 2.14489, 2.14489, 2.14489, 2.14489, 2.14489, 2.14489, 2.14489, \ 2.14489, 2.14489, 2.14489, 2.14489, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, 2.60502, \ 2.60502, 2.60502, 2.60502, 2.60502} This is a list of the different elements of the matrix In[35]:= el = Chop[Union[Flatten[expr]]] Out[35]= {-0.499383, -0.477465, -0.119366, 0, 0, 0.00704468, 0.00996269, 0.0166045, \ 0.0265672, 0.105549, 0.167928, 0.263874, 1.60012, 1.61194, 2.14489, 2.60502, \ 2.86954}