******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 2. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.15 2 2 2) (4, 1 & -1, 2 & 1, 0.15 2 2 2). Spectra extrapolated using (K,p) = (8/2,6) (8/2,8) (10/2,6) (10/2,8) (16/2,6) . Winding potential using (n,K,p) = ( 2,10/2,6) ( 2,10/2,4) ( 2,16/2,4) ( 3,9/2,7) ( 3,9/2,5) ( 3,13/2,5) ( 4,10/2,8) ( 4,10/2,6) ( 4,14/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-14/2,2,4) ( 0,-14/2,4,4) ( 0,-14/2,4,3) ( 0,-34/2,2,4) , L = 2 3 4 (all in G^2 N units); with relative error 2.5. Roundness determined using (n,K,p,K_max) = ( 1,-7/2,3,4) ( 1,-7/2,5,4) ( 1,-7/2,3,3) ( 1,-21/2,3,4) , L=2 and error 3 (all in G^2 N units). p-extrapolation using n=( 1) and (K,p) = (19/2,1) (29/2,1) (19/2,3) (29/2,3) (19/2,5) (21/2,5) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=2 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 72 8.283440 -1.195811 6.795873 0.000000 1.000000 -0.026105 -0.097615 3.072261 0.200479 2 3 4 5 0.211406 -0.375384 0.006214 0.225813 -0.010174 0.011432 0.868766 0.830656 16.524200 16.568247 1.012512 23.888058 23.867768 -0.466393 25.583377 25.595361 0.275473 44.382371 44.402974 0.473585 22.258383 22.286654 0.649871 44.320063 44.354198 0.784661 58.281565 58.325261 1.004447 70.089968 70.012662 -1.777043 2 68 7.925211 -0.997647 6.601070 0.001968 1.000000 -0.052382 -0.118634 8.579130 1.286895 2 3 4 5 0.231937 -0.419043 0.052301 0.231125 -0.221339 -0.122521 0.933065 0.614110 16.524200 16.568736 1.090984 26.817986 26.787130 -0.755861 28.978086 29.009014 0.757626 45.422851 45.433617 0.263725 22.960113 22.989833 0.728023 45.496629 45.532523 0.879293 59.879739 59.952527 1.783058 69.710080 69.607955 -2.501711 2 48 11.765213 -1.008114 5.643575 0.007919 1.000000 -0.031651 -0.174586 162.188645 11.656342 2 3 4 5 0.247657 -0.435685 0.024684 0.088889 -4.670016 -2.297593 -3.127016 -5.029915 16.524200 16.574690 1.129103 28.030164 28.002094 -0.627733 28.472504 28.498637 0.584409 43.550225 43.551783 0.034822 20.520763 20.549100 0.633682 42.262837 42.300269 0.837071 55.490562 55.617447 2.837498 60.133811 60.029432 -2.334208 2 104 3.663708 -0.871953 7.446424 0.018006 1.000000 -0.142033 -0.089593 2.812330 1.427940 2 3 4 5 0.317188 -0.536077 0.258872 0.231609 -0.230133 -0.133514 0.975198 0.817252 16.524200 16.553987 1.125688 28.340426 28.366255 0.976098 30.681868 30.655347 -1.002250 52.043325 52.096809 2.021189 29.889060 29.911000 0.829105 60.383016 60.412510 1.114595 74.387365 74.414697 1.032914 75.770414 75.776114 0.215442 2 100 1.586238 -0.669245 7.368206 0.032492 1.000000 -0.191335 -0.114245 67.135924 0.354774 2 3 4 5 0.333540 -0.593811 0.341185 0.235501 -0.023761 0.006895 1.018326 1.085014 16.524200 16.550223 1.023260 30.269503 30.248871 -0.811264 40.414991 40.439242 0.953584 58.297621 58.299096 0.057969 30.840821 30.865523 0.971308 61.345063 61.378272 1.305822 73.634164 73.653799 0.772105 77.059889 77.056294 -0.141389 2 29 9.464839 -0.767993 5.470171 0.051777 1.000000 -0.181672 -0.181861 18.419841 0.153119 2 3 4 5 0.356432 -0.576588 0.273605 0.236894 -0.015544 0.021367 1.006697 0.897233 16.524200 16.564391 1.253783 28.529035 28.497238 -0.991939 31.033771 31.050138 0.510565 49.008064 49.011567 0.109282 24.132163 24.153588 0.668373 49.994623 50.026213 0.985474 61.910463 61.925393 0.465734 62.253075 62.248481 -0.143320 5 104 5.229271 -0.660116 6.127262 0.076429 1.000000 -0.257614 -0.160266 11.124578 5.725098 2 3 4 5 0.402872 -0.621625 0.375725 0.163977 -1.620575 -1.013586 -0.057304 -1.135235 16.524200 16.553818 1.169798 31.329692 31.308168 -0.850085 34.952853 34.966935 0.556209 57.001705 57.004215 0.099149 28.602648 28.622024 0.765281 59.694791 59.729339 1.364501 69.607019 69.635978 1.143750 71.196150 71.200827 0.184737 5 102 18.105827 -0.892437 4.117066 0.107240 1.000000 -0.213613 -0.254000 8.244382 5.082016 2 3 4 5 0.442614 -0.550206 0.180066 0.188985 -1.281557 -0.771763 0.343401 -0.868168 16.524200 16.563910 1.157793 24.977419 24.989143 0.341844 28.735670 28.705607 -0.876511 40.767619 40.790942 0.680022 20.563791 20.578310 0.423294 45.289589 45.321162 0.920562 48.326241 48.340336 0.410972 54.173992 54.144804 -0.851020 2 52 17.920366 -0.719679 4.469441 0.145309 1.000000 -0.317945 -0.260707 10.065038 13.992550 2 3 4 5 0.475660 -0.562343 0.203387 0.237789 -0.179807 -0.085944 1.167891 0.670554 16.524200 16.563326 1.330875 28.320289 28.331037 0.365579 30.393427 30.363391 -1.021703 44.877253 44.909002 1.079934 23.426130 23.441075 0.508350 52.360770 52.405821 1.532414 52.979438 52.977771 -0.056706 59.975378 60.026859 1.751113 2 82 18.652591 -0.799259 4.134021 0.192168 1.000000 -0.359046 -0.268932 6.275955 -1.206457 2 3 4 5 0.545659 -0.489330 0.068801 0.225799 -0.075097 -0.188986 0.670399 0.697389 16.524200 16.557332 1.195804 26.808594 26.822040 0.485316 31.875493 31.851264 -0.874465 36.970400 36.971433 0.037266 23.305897 23.317207 0.408192 51.558983 51.574559 0.562190 52.872329 52.892074 0.712645 60.234486 60.275493 1.480019 2 33 533.907473 -0.820990 2.758664 0.250000 1.000000 -0.038011 -0.751721 26.541855 12.275174 2 3 4 5 0.515532 -0.493281 -0.330796 0.076482 -3.723874 -2.361491 -2.121034 -4.347533 16.524200 16.585035 1.384290 21.420258 21.438300 0.410541 30.352556 31.745390 31.693758 31.766464 33.250304 33.764590 15.893648 15.907349 0.311771 34.843799 34.863697 0.452777 37.882868 37.907680 0.564574 47.096982 47.078546 -0.419524