******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale determined by best chi^2 fit. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = ( 0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (8/2,6) (8/2,8) (10/2,6) (10/2,8) (16/2,6) . Winding potential using (n,K,p) = ( 2,10/2,6) ( 2,10/2,4) ( 2,16/2,4) ( 3,9/2,7) ( 3,9/2,5) ( 3,13/2,5) ( 4,10/2,8) ( 4,10/2,6) ( 4,14/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-14/2,2,4) ( 0,-14/2,4,4) ( 0,-14/2,4,3) ( 0,-34/2,2,4) , L = 2 3 4 (all in G^2 N units); with relative error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-7/2,3,4) ( 1,-7/2,5,4) ( 1,-7/2,3,3) ( 1,-21/2,3,4) , L=2 and error 0.3 (all in G^2 N units). p-extrapolation using (n,K,p) = ( 1,21/2,1) ( 1,17/2,3) ( 1,21/2,3) ( 1,21/2,5) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=2 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 1 35 4.884223 -0.388456 8.432521 0.000000 1.000000 -0.097508 -0.091177 4.606175 -2.558955 2 3 4 5 0.184047 -0.462538 0.091950 0.118411 -1.677097 -1.398572 -1.637411 -1.525966 7.021729 7.065089 1.076713 20.592639 20.556988 -0.885270 28.633909 28.668932 0.869685 41.025221 41.064930 0.986025 26.975551 27.025613 1.243142 46.073325 46.111588 0.950140 69.690867 69.695589 0.117275 71.583584 71.611956 0.704517 1 25 21.494979 -0.687321 4.767853 0.001968 1.000000 -0.114386 -0.068039 8.115137 -0.628270 2 3 4 5 0.244065 -0.484044 0.183378 0.213217 -0.109272 -0.072714 0.482990 0.526041 7.629994 7.642582 0.234366 14.104202 14.094463 -0.181325 20.406480 20.427105 0.384005 27.160073 27.214465 1.012703 16.865434 16.882716 0.321766 31.178782 31.196656 0.332791 43.103918 43.089860 -0.261734 43.440526 43.421932 -0.346190 1 46 17.194630 -1.761020 7.783700 0.007919 1.000000 -0.038160 -0.058806 11.447178 -2.128489 2 3 4 5 0.317963 -0.469447 0.136458 0.138615 -0.575499 -1.026275 -0.597804 -0.119697 32.071427 32.096204 0.981165 37.767982 37.751676 -0.645716 37.364427 37.389149 0.978971 64.991833 64.992991 0.045876 29.978208 29.992776 0.576890 66.382566 66.403707 0.837157 80.981114 80.973749 -0.291643 82.855214 82.859863 0.184076 1 33 10.314127 -0.926369 6.196819 0.018006 1.000000 -0.090042 -0.162284 753.181130 -1.626930 2 3 4 5 0.288289 -0.493289 0.135138 0.170013 -0.300173 -0.725659 -0.113062 0.172903 18.610031 18.658521 1.386040 30.337205 30.300412 -1.051657 32.990888 33.018300 0.783542 49.841736 49.844535 0.079995 24.313051 24.340488 0.784248 49.813292 49.849867 1.045453 65.973209 65.982110 0.254427 65.585351 65.597672 0.352184 1 22 9.827399 -1.121368 6.801080 0.032492 1.000000 -0.123122 -0.122616 56.657704 -1.898713 2 3 4 5 0.357879 -0.528869 0.219915 0.158078 -0.302203 -0.906084 -0.213489 0.214598 25.789285 25.823306 1.324867 35.801995 35.775419 -1.034957 38.182982 38.203720 0.807581 60.989791 60.992276 0.096756 29.055148 29.074639 0.759034 62.400309 62.430275 1.166988 75.345816 75.358202 0.482363 76.601823 76.612515 0.416377 2 38 11.094224 -1.030143 5.937100 0.051777 1.000000 -0.160506 -0.141234 7.140202 -1.415740 2 3 4 5 0.391765 -0.553099 0.256984 0.197069 -0.145237 -0.478818 0.256165 0.572957 21.691494 21.724943 1.244786 33.460207 33.433396 -0.997762 31.729269 31.746741 0.650243 56.655362 56.658191 0.105267 26.809918 26.826760 0.626748 58.065365 58.093091 1.031820 67.005341 67.022353 0.633093 70.432249 70.434352 0.078262 1 51 11.763118 -1.126483 5.737012 0.076429 1.000000 -0.187264 -0.131629 8.654818 -1.395515 2 3 4 5 0.451097 -0.557267 0.263940 0.205932 -0.124546 -0.397980 0.367757 0.677800 24.595557 24.620915 1.049986 36.302924 36.274314 -1.184650 33.830322 33.853294 0.951179 60.430810 60.432232 0.058904 27.720985 27.733577 0.521390 62.014188 62.039162 1.034100 66.339639 66.351626 0.496337 73.349375 73.351400 0.083833 1 24 14.492792 -1.213803 4.769219 0.107240 1.000000 -0.173218 -0.199546 10.347336 -0.826420 2 3 4 5 0.489346 -0.524771 0.146415 0.235097 -0.077709 -0.056333 0.766199 0.822286 23.956112 23.986261 1.125794 36.223073 36.197515 -0.954359 31.445983 31.460039 0.524873 56.145310 56.146194 0.033015 24.450213 24.462182 0.446949 54.885276 54.906130 0.778727 57.527712 57.546975 0.719310 65.889257 65.881515 -0.289089 1 13 19.945708 -1.525563 3.407535 0.145309 1.000000 -0.117394 -0.237067 4.302054 -1.272027 2 3 4 5 0.562994 -0.482915 -0.006238 0.228465 -0.117473 -0.176622 0.645020 0.569733 15.335539 15.357147 0.663253 26.979799 26.998187 0.564413 31.922862 31.903937 -0.580893 31.725839 31.731523 0.174475 18.811236 18.818628 0.226907 40.561333 40.575034 0.420564 46.346473 46.358334 0.364071 52.014381 52.058120 1.342570 1 25 17.643703 -1.509203 3.934194 0.192168 1.000000 -0.191759 -0.208306 8.630561 -0.979771 2 3 4 5 0.638393 -0.426288 -0.128202 0.238299 -0.083070 -0.058969 0.843380 0.788936 22.945926 22.962046 0.647809 34.366514 34.382639 0.647999 39.182563 39.164229 -0.736745 35.913597 35.933052 0.781817 23.355357 23.361919 0.263713 48.965914 48.975834 0.398658 58.276107 58.288063 0.480468 65.107513 65.130634 0.929105 1 54 14.473093 -1.369947 5.066155 0.250000 1.000000 -0.330376 -0.105285 1.979843 -0.027709 2 3 4 5 0.730184 -0.343315 -0.253096 0.243291 -0.013711 0.018772 1.161172 1.150416 17.078309 17.095677 1.027970 45.035106 45.039158 0.239803 47.929762 47.935141 0.318341 52.078839 52.073962 -0.288642 32.188866 32.193097 0.250411 66.139834 66.144866 0.297791 81.331338 81.341337 0.591850 85.560430 85.575262 0.877897