********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.2 2 0.5 2) (4, 1 & -1, 2 & 1, 0.2 0.5 0.5 2). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 0,-19/2,3,3) ( 0,-19/2,5,3) ( 0,-19/2,3,4.5) ( 0,-33/2,3,3) ( 0,-33/2,3,4.5) ( 0,-49/2,3,3) ( 0,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 67 6.440423 -1.527540 8.083165 0.000000 1.000000 -0.020535 -0.112087 49.866661 -0.679921 -0.556956 2 3 4 5 6 0.181887 -0.386133 0.125152 0.124235 0.257201 -0.243528 0.617470 0.614835 0.728754 0.729055 0.804549 0.829669 16.524200 16.572124 1.127336 27.434174 27.400650 -0.788593 37.920154 37.945433 0.594636 46.661506 46.662141 0.014946 25.272317 25.308982 0.862489 46.596011 46.632061 0.848011 61.909904 61.911629 0.040571 65.467201 65.508404 0.969243 3 65 7.243898 -1.307728 7.976653 0.001968 1.000000 -0.064029 -0.107134 1086.483966 1.126528 -0.761189 2 3 4 5 6 0.210955 -0.402148 0.119467 0.130833 0.189151 -0.168829 0.650951 0.622399 0.731598 0.731380 0.789696 0.809552 16.524200 16.566909 1.149876 26.821632 26.788017 -0.905035 39.386177 39.410083 0.643618 47.839873 47.845020 0.138591 26.828185 26.861221 0.889455 48.813630 48.844570 0.833016 64.166526 64.165405 -0.030191 68.247641 68.249454 0.048823 1 58 8.049520 -1.144653 7.840584 0.007919 1.000000 -0.102014 -0.107022 1917.082543 -0.885406 -0.737400 2 3 4 5 6 0.240419 -0.413400 0.096654 0.129493 0.229313 -0.210276 0.680856 0.672443 0.777480 0.777289 0.811518 0.834721 16.524200 16.561536 1.126063 26.940325 26.909512 -0.929315 40.337574 40.358827 0.640992 49.297092 49.301116 0.121370 28.109881 28.139459 0.892081 51.014707 51.042365 0.834162 66.337479 66.334966 -0.075787 69.368524 69.338844 -0.895185 2 41 26.352757 -1.530432 5.559045 0.018006 1.000000 -0.096660 -0.105421 4.548136 0.688074 -1.040975 2 3 4 5 6 0.292035 -0.386802 0.051914 0.193918 0.109549 -0.126955 0.720769 0.649840 0.774207 0.834951 1.037057 1.053745 16.524200 16.551324 0.704547 24.057968 24.018520 -1.024647 24.630950 24.661992 0.806297 41.036242 41.038162 0.049877 21.644847 21.659833 0.389270 42.168556 42.185765 0.447010 52.590351 52.565265 -0.651610 52.877049 52.902460 0.660052 3 79 21.467853 -1.637591 7.827357 0.032492 1.000000 -0.129439 -0.066316 1.462637 1.546600 -0.968602 2 3 4 5 6 0.350811 -0.367766 0.000805 0.129208 0.188449 -0.176845 0.755221 0.749323 0.835726 0.835437 0.773243 0.799120 16.524200 16.548847 1.082867 31.785571 31.797036 0.503703 37.331900 37.320143 -0.516573 54.268804 54.288242 0.854000 32.877641 32.890496 0.564811 66.566035 66.582541 0.725187 77.039564 77.035472 -0.179793 81.001520 80.972921 -1.256478 2 40 24.393931 -1.210396 5.816449 0.051777 1.000000 -0.172806 -0.140109 3.398164 0.950879 -0.896557 2 3 4 5 6 0.355245 -0.382578 -0.063538 0.189102 0.111221 -0.121637 0.780992 0.731701 0.880952 0.891010 1.016425 1.032401 16.524200 16.556994 1.084182 25.858049 25.872947 0.492518 29.036789 29.013970 -0.754414 44.115636 44.138835 0.766959 25.375520 25.390747 0.503422 49.863550 49.883280 0.652273 58.490616 58.489127 -0.049240 61.879334 61.887453 0.268396 2 58 23.508614 -1.092003 5.813262 0.076429 1.000000 -0.226520 -0.142977 3.580562 1.042034 -0.885643 2 3 4 5 6 0.397716 -0.372323 -0.146615 0.189246 0.107038 -0.114916 0.812368 0.769491 0.924371 0.920899 1.015133 1.030284 16.524200 16.553149 1.070894 27.329782 27.344248 0.535157 30.826079 30.806422 -0.727161 45.568903 45.589896 0.776598 26.904870 26.918539 0.505630 53.319172 53.338673 0.721395 60.282577 60.282100 -0.017662 65.514689 65.513588 -0.040744 2 44 10.522562 -0.777318 6.856228 0.107240 1.000000 -0.318963 -0.147895 7.480227 -1.380544 -1.163403 2 3 4 5 6 0.428908 -0.375301 -0.314762 0.154001 0.145225 -0.124371 0.836226 0.809023 0.911702 0.912475 0.875585 0.890354 16.524200 16.547058 1.075506 34.880489 34.864522 -0.751288 38.544411 38.554450 0.472358 59.799082 59.820215 0.994349 33.064336 33.080609 0.765650 63.870935 63.895930 1.176027 72.221330 72.217156 -0.196390 76.668664 76.646848 -1.026478 3 81 12.991275 -1.096777 12.208081 0.145309 1.000000 -0.359285 -0.013851 0.827195 -2.507712 -1.424972 2 3 4 5 6 0.556394 -0.287028 -0.368601 0.077492 0.222141 -0.193118 0.885280 0.906595 0.934146 0.933462 0.539587 0.570978 16.524200 16.534303 1.097973 56.811888 56.814101 0.240487 81.595684 81.596029 0.037437 95.208825 95.221400 1.366729 64.804735 64.810733 0.651856 134.999541 135.008578 0.982194 140.239732 140.245544 0.631653 150.246809 150.215073 -3.449025 2 28 20.145445 -0.818435 6.167191 0.192168 1.000000 -0.441464 -0.146924 4.174797 -1.339378 -1.412993 2 3 4 5 6 0.563663 -0.317847 -0.527115 0.181708 0.100620 -0.090406 0.919763 0.922435 0.981874 1.039586 0.979777 0.991080 16.524200 16.543552 1.076352 30.616604 30.631254 0.814784 44.562991 44.550825 -0.676652 53.664740 53.680472 0.875052 34.182291 34.191870 0.532767 69.839137 69.849332 0.567060 71.473046 71.486887 0.769868 79.471736 79.447576 -1.343811 -2 7 81.307642 -1.611173 2.912386 0.250000 1.000000 -0.327462 -0.146407 6.583987 -1.463323 -2.190896 2 3 4 5 6 0.717967 -0.305340 -0.372971 0.189588 0.099903 -0.103868 1.003157 0.525668 0.974968 0.736319 1.010465 1.027068 16.524200 16.531903 0.257706 25.817818 25.822784 0.166152 29.688043 29.682017 -0.201596 31.582196 31.588436 0.208736 18.360584 18.363078 0.083449 36.318393 36.319691 0.043433 43.747104 43.753025 0.198096 48.676440 48.669702 -0.225397