******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 Use chi^2 fit with 13 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (8/2,6) (8/2,8) (10/2,6) (10/2,8) (16/2,6) . Winding potential using (n,K,p) = ( 2,10/2,6) ( 2,10/2,4) ( 2,16/2,4) ( 3,9/2,7) ( 3,9/2,5) ( 3,13/2,5) ( 4,10/2,8) ( 4,10/2,6) ( 4,14/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-14/2,2,4) ( 1,-14/2,4,4) ( 1,-14/2,4,3) ( 1,-34/2,2,4) , L = 2 3 4 (all in G^2 N units); relative scale error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-7/2,3,4) ( 1,-7/2,5,4) ( 1,-7/2,3,3) ( 1,-21/2,3,4) ( 1,-7/2,3,4) ( 1,-7/2,5,4) ( 1,-7/2,3,3) ( 1,-21/2,3,4) , L= 2 1 and error 0.3 0.3 (all in G^2 N units). p-extrapolation using n=( 1) and (K,p) = (19/2,1) (29/2,1) (19/2,3) (29/2,3) (19/2,5) (21/2,5) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 7 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; Roundness with calculated and derived values (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 43 14.776135 -1.185372 6.219873 0.000000 1.000000 0.004311 -0.123392 10.430652 -0.748641 -1.316563 2 3 4 5 6 0.201075 -0.358438 -0.040550 0.161560 0.010691 0.085891 0.569460 0.590199 0.558022 0.518370 16.524200 16.567604 0.868543 26.163250 26.144032 -0.384568 26.608572 26.640929 0.647489 42.077943 42.102256 0.486524 19.988463 20.017262 0.576293 40.732862 40.769127 0.725669 53.987905 54.047820 1.198925 64.821396 64.787408 -0.680114 2 24 16.147984 -1.141572 5.618620 0.001968 1.000000 0.014975 -0.160688 7.382568 -0.309344 -0.428796 2 3 4 5 6 0.222487 -0.388739 -0.038484 0.203915 0.013915 0.028124 0.790637 0.699421 0.692099 0.601454 16.524200 16.573749 0.991034 25.897785 25.869874 -0.558253 25.901922 25.926238 0.486342 42.013045 42.020716 0.153442 19.071333 19.098370 0.540784 40.010560 40.046976 0.728354 52.707362 52.770903 1.270888 59.254655 59.227435 -0.544414 2 78 16.940315 -1.515849 4.836508 0.007919 1.000000 -0.008265 -0.122700 3.505230 -0.226110 -1.272278 2 3 4 5 6 0.288112 -0.443069 0.062909 0.214672 0.004347 0.026847 0.693619 0.716043 0.659269 0.611212 16.524200 16.559189 0.780091 20.397005 20.408000 0.245153 25.298651 25.277488 -0.471835 38.241743 38.274735 0.735555 18.133768 18.149110 0.342064 39.802649 39.825082 0.500156 49.936228 49.947155 0.243621 50.477199 50.486762 0.213218 2 53 13.752160 -1.072695 5.338128 0.018006 1.000000 -0.115044 -0.099257 6.918795 -0.794702 -1.661271 2 3 4 5 6 0.321720 -0.513215 0.210493 0.189448 -0.010001 0.078683 0.673667 0.699136 0.662759 0.618762 16.524200 16.547719 0.646252 24.253954 24.236966 -0.466788 25.341002 25.357138 0.443398 43.276781 43.279292 0.068997 21.504082 21.519663 0.428160 44.707888 44.729792 0.601873 54.182686 54.177701 -0.136988 55.745858 55.794294 1.330927 5 101 23.909416 -1.220128 3.290154 0.032492 1.000000 0.246236 -0.226991 17.334685 0.344443 -2.411671 2 3 4 5 6 0.347405 -0.580697 0.242359 0.235105 -0.041104 0.062005 0.591121 0.636109 0.629062 0.500290 16.524200 16.544088 0.363723 20.213590 20.226751 0.240695 25.274234 25.261858 -0.226349 36.494832 36.493060 -0.032406 12.960237 12.968616 0.153248 32.894020 32.908458 0.264050 33.522241 33.554658 0.592856 39.577547 39.571099 -0.117930 5 100 12.767029 -1.096315 5.434877 0.051777 1.000000 -0.176549 -0.092181 3.296689 -1.155519 -2.034633 2 3 4 5 6 0.414034 -0.567645 0.308218 0.185570 -0.030574 0.105878 0.720007 0.743297 0.717783 0.673503 16.524200 16.543942 0.710766 26.158949 26.168642 0.348981 29.848860 29.838665 -0.367065 41.992738 42.022085 1.056591 24.802852 24.813735 0.391842 54.301180 54.320912 0.710395 61.826447 61.830529 0.146983 62.792324 62.820634 1.019260 2 33 18.078509 -1.123637 4.482147 0.076429 1.000000 -0.186867 -0.139040 4.453213 -0.534407 -2.062901 2 3 4 5 6 0.447707 -0.555863 0.257953 0.222913 -0.015504 0.045476 0.771530 0.800660 0.761056 0.703592 16.524200 16.546873 0.727950 24.809115 24.820489 0.365170 28.424396 28.408757 -0.502135 37.214843 37.252909 1.222207 21.625794 21.636112 0.331275 48.297845 48.317945 0.645351 51.766997 51.777529 0.338136 57.234128 57.234127 -0.000020 2 21 24.386794 -1.093575 3.575014 0.107240 1.000000 -0.187323 -0.221666 8.714294 0.282981 -3.002808 2 3 4 5 6 0.472499 -0.531108 0.156655 0.239240 -0.030015 0.044552 0.688877 0.742060 0.733385 0.621504 16.524200 16.551244 0.730918 22.697369 22.707969 0.286474 26.371380 26.349643 -0.587461 36.513421 36.526456 0.352297 18.166756 18.177007 0.277055 40.747133 40.767676 0.555204 42.451741 42.465013 0.358693 48.558764 48.546734 -0.325141 2 52 10.867111 -1.511504 6.474147 0.145309 1.000000 -0.211600 -0.086717 1.242314 -2.174631 -2.803297 2 3 4 5 6 0.602867 -0.501884 0.113705 0.155927 -0.063869 0.164528 0.788999 0.810122 0.806633 0.767411 16.524200 16.545772 1.347163 48.683936 48.691700 0.484827 54.952590 54.953292 0.043850 55.434837 55.434901 0.004015 36.142106 36.148587 0.404685 78.103726 78.114439 0.669004 89.282523 89.292335 0.612731 98.005239 98.024164 1.181854 3 66 28.283286 -1.082971 4.227319 0.192168 1.000000 -0.359792 -0.084096 4.107504 -0.186696 -2.266600 2 3 4 5 6 0.635754 -0.475703 0.126871 0.238307 -0.014014 0.025950 0.902393 0.926609 0.877069 0.831214 16.524200 16.534524 0.443956 28.659164 28.662342 0.136651 35.029998 35.027903 -0.090073 38.707311 38.707955 0.027692 24.578991 24.582942 0.169910 53.222915 53.227764 0.208504 59.274723 59.284484 0.419752 61.747937 61.731597 -0.702617 2 76 26.277370 -1.111692 3.748607 0.250000 1.000000 -0.424620 -0.056226 4.749611 0.045328 -2.670457 2 3 4 5 6 0.715275 -0.369543 -0.093378 0.240857 -0.014091 0.023538 0.913495 0.895035 0.901090 0.793674 16.524200 16.530689 0.278383 28.234876 28.236559 0.072216 35.095125 35.094775 -0.015008 36.241010 36.239667 -0.057608 23.341881 23.344067 0.093786 49.034871 49.037149 0.097760 57.747363 57.755250 0.338366 58.376159 58.372794 -0.144337