********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 27 21.67204335 -0.9903246582 4.923769521 0.1921681542 1 -0.3825182146 -0.2152287725 13.19375426 0.9652233045 -1.357837912 2 3 4 5 6 0.549239 -0.381725 -0.115551 0.212898 0.061633 -0.068297 0.930756 0.819791 1.003243 0.987903 1.361372 1.368429 21.502356 21.526274 1.034897 33.910982 33.917921 0.300252 35.786099 35.766510 -0.847613 55.241615 55.259889 0.790724 27.693484 27.703537 0.434988 57.280046 57.288652 0.372405 58.153689 58.169394 0.679539 67.340061 67.316403 -1.023665 21.502356 35.786099 33.910982 56.361672 69.195477 82.324404 101.274771 102.298739 27.693484 57.280046 58.153689 67.340061 55.241615 75.512405 83.654714 83.917989 2 26 19.20442702 -0.7358680698 5.080468979 0.25 1 -0.5110228805 -0.2408977994 58.1249112 -1.077170761 -1.629349656 2 3 4 5 6 0.580011 -0.370503 -0.192870 0.204654 0.065876 -0.060567 0.965218 0.842071 1.009299 0.995487 1.356709 1.350169 17.875330 17.896547 1.000346 35.764549 35.760756 -0.178844 37.853507 37.844768 -0.412053 56.920068 56.921790 0.081211 29.914594 29.925392 0.509101 60.582589 60.602516 0.939487 60.595207 60.604005 0.414820 69.117645 69.089136 -1.344121 17.875330 35.764549 37.853507 62.387796 72.829080 86.525940 104.794793 106.604155 29.914594 60.595207 60.582589 69.117645 56.920068 77.201744 86.357453 87.881821 2 8 25.4737597 -0.7358680698 5.080468979 0.25 1 -0.5008957501 -0.2500561369 16.16117249 0.6678748635 -1.394981832 2 3 4 5 6 0.580011 -0.370503 -0.192870 0.204654 0.065876 -0.060567 0.965218 0.842071 1.009299 0.995487 1.356709 1.350169 17.875330 17.896547 1.000346 35.764549 35.760756 -0.178844 37.853507 37.844768 -0.412053 56.920068 56.921790 0.081211 29.914594 29.925392 0.509101 60.582589 60.602516 0.939487 60.595207 60.604005 0.414820 69.117645 69.089136 -1.344121 17.875330 35.764549 37.853507 62.387796 72.829080 86.525940 104.794793 106.604155 29.914594 60.595207 60.582589 69.117645 56.920068 77.201744 86.357453 87.881821