********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 70 9.099104393 -0.3713171387 5.519545975 0.1453085056 1 -0.414562613 -0.2202096409 15.84628951 -0.9938799552 -1.40948372 2 3 4 5 6 0.409051 -0.815902 0.818367 0.189464 0.081364 -0.058776 0.855170 0.733549 0.900861 0.887345 1.224485 1.231396 2.416284 2.443170 0.971235 22.282696 22.260157 -0.814223 33.486222 33.495368 0.330398 43.613015 43.639113 0.942755 27.212376 27.232121 0.713282 47.119615 47.150334 1.109685 58.750273 58.731360 -0.683253 59.039429 59.029652 -0.353175 2.416284 22.282696 33.486222 43.613015 60.753193 75.571537 83.769004 94.442263 27.212376 47.119615 58.750273 59.039429 43.876207 63.966531 59.293210 70.383986 2 71 9.110379715 -0.3713171387 5.519545975 0.1453085056 1 -0.4192145066 -0.2220303382 14.8295574 1.207591085 -1.427118065 2 3 4 5 6 0.409051 -0.815902 0.818367 0.189464 0.081364 -0.058776 0.855170 0.733549 0.900861 0.887345 1.224485 1.231396 2.416284 2.443170 0.971235 22.282696 22.260157 -0.814223 33.486222 33.495368 0.330398 43.613015 43.639113 0.942755 27.212376 27.232121 0.713282 47.119615 47.150334 1.109685 58.750273 58.731360 -0.683253 59.039429 59.029652 -0.353175 2.416284 22.282696 33.486222 43.613015 60.753193 75.571537 83.769004 94.442263 27.212376 47.119615 58.750273 59.039429 43.876207 63.966531 59.293210 70.383986 2 60 12.99336602 -0.8183510518 6.948039274 0.1921681542 1 -0.4377177436 -0.1589070917 12.24199727 -1.84851595 -1.916790157 2 3 4 5 6 0.546511 -0.409631 -0.015689 0.147104 0.136202 -0.115305 0.920196 0.869340 0.908136 0.956350 1.203423 1.174582 22.163307 22.179892 1.007584 45.533479 45.522176 -0.686680 45.672954 45.680772 0.474987 72.889188 72.902851 0.830082 38.524439 38.536520 0.734000 78.992231 79.005540 0.808572 79.378772 79.394518 0.956651 88.345431 88.319385 -1.582379 22.163307 45.533479 45.672954 74.505673 93.608138 112.022841 137.111578 138.988877 38.524439 79.378772 78.992231 88.345431 72.889188 100.025767 108.698336 111.096412 2 7 15.7774616 -0.8183510518 6.948039274 0.1921681542 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656 2 3 4 5 6 0.546511 -0.409631 -0.015689 0.147104 0.136202 -0.115305 0.920196 0.869340 0.908136 0.956350 1.203423 1.174582 22.163307 22.179892 1.007584 45.533479 45.522176 -0.686680 45.672954 45.680772 0.474987 72.889188 72.902851 0.830082 38.524439 38.536520 0.734000 78.992231 79.005540 0.808572 79.378772 79.394518 0.956651 88.345431 88.319385 -1.582379 22.163307 45.533479 45.672954 74.505673 93.608138 112.022841 137.111578 138.988877 38.524439 79.378772 78.992231 88.345431 72.889188 100.025767 108.698336 111.096412