********** Eigenvalues for the 2+1 transverse lattice **********
Couplings:  m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2          
             0      1     2     3     4      5      6   (2-6 /a)
Use chi^2 fit with 14 criteria, and tolerance 0.001.  
Overall scale from minimizing chi^2.
2 parity doublets with fractional errors 1 0.1.
Spectrum for P_perp a = (0)  ( 0.25) 
 using (# states, o, multiplet, c^2 error for each) =
  (4, 1 & -1, 1 & 2, 0.1 2 2 0.5)
  (4, 1 & -1, 2 & 1, 0.25 0.25 1 1).
Spectra extrapolated using (K,p) = (18/2,6)  (18/2,8) 
  (20/2,6)  (20/2,8)  (26/2,6)  (32/2,6) .
Winding potential using (n,K,p) = ( 2,20/2,4)  ( 2,20/2,6) 
  ( 2,20/2,4)  ( 2,20/2,6)  ( 2,24/2,4)  ( 2,28/2,4)  ( 3,19/2,5) 
  ( 3,19/2,7)  ( 3,21/2,5)  ( 3,21/2,7)  ( 3,23/2,5)  ( 3,27/2,5) 
  ( 4,18/2,6)  ( 4,18/2,8)  ( 4,20/2,6)  ( 4,20/2,8)  ( 4,22/2,6) 
  ( 4,26/2,6) .
Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) 
  ( 1,-32/2,4,3)  ( 1,-32/2,2,4.5)  ( 1,-44/2,2,3)  ( 1,-44/2,2,4.5) 
  ( 1,-60/2,2,3)  ( 1,-60/2,2,4.5) ,
 L = 3 4 6 (all in G^2 N units); relative scale error 0.1.
Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) 
  ( 1,-19/2,5,3)  ( 1,-19/2,3,4.5)  ( 1,-33/2,3,3)  ( 1,-33/2,3,4.5) 
  ( 1,-49/2,3,3)  ( 1,-49/2,3,4.5) 
 L=0 and error 0.1; 
  ( 1,-19/2,3,3)  ( 1,-19/2,5,3)  ( 1,-19/2,3,4.5)  ( 1,-33/2,3,3) 
  ( 1,-33/2,3,4.5)  ( 1,-49/2,3,3)  ( 1,-49/2,3,4.5) 
 L=2.5 and error 0.1; 
  ( 1,-19/2,3,3)  ( 1,-19/2,5,3)  ( 1,-19/2,3,4.5)  ( 1,-33/2,3,3) 
  ( 1,-33/2,3,4.5)  ( 1,-49/2,3,3)  ( 1,-49/2,3,4.5) 
 L=5 and error 0.1; all in G^2 N units.
p-extrapolation using n=( 1) and (K,p) = (21/2,3)  (27/2,3) 
  (39/2,3)  (21/2,5)  (27/2,5)  (21/2,7)  (23/2,7) .
Result format:
 Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma.
 The 7 couplings (G^2 N units) and which--if any--were fit.
 Winding potential and heavy source potential fits.
 Roundness with calculated and derived values (G^2 N units).
 The rescaled spectrum for each P_perp*a and c^2 values.
 Finally come the states for the ordinary spectra.

2 52 9.076282673 -0.3663905366 5.54439718
0.1453085056 1 -0.4158116115 -0.2186788015 13.28244649 -1.012422913 -1.426072246  2 3 4 5 6
0.408991 -0.822224 0.831453  0.188724 0.081445 -0.057879
0.854786 0.734295  0.897837 0.886883  1.219465 1.228815  
 2.106611 2.133271 0.967280
 22.192484 22.170368 -0.802403
 33.051084 33.060681 0.348213
 43.629943 43.657200 0.988906
 27.321738 27.341512 0.717450
 47.219700 47.250494 1.117242
 58.854313 58.835996 -0.664575
 59.256966 59.246564 -0.377397
2.106611 22.192484 33.051084 43.629943 
60.907099 75.796344 83.734917 94.741601 
27.321738 47.219700 58.854313 59.256966 
43.924105 63.936396 59.200313 70.496120 

2 53 9.14086064 -0.3663905366 5.54439718
0.1453085056 1 -0.4155542412 -0.220868298 15.61015224 1.192364806 -1.398609336  2 3 4 5 6
0.408991 -0.822224 0.831453  0.188724 0.081445 -0.057879
0.854786 0.734295  0.897837 0.886883  1.219465 1.228815  
 2.106611 2.133271 0.967280
 22.192484 22.170368 -0.802403
 33.051084 33.060681 0.348213
 43.629943 43.657200 0.988906
 27.321738 27.341512 0.717450
 47.219700 47.250494 1.117242
 58.854313 58.835996 -0.664575
 59.256966 59.246564 -0.377397
2.106611 22.192484 33.051084 43.629943 
60.907099 75.796344 83.734917 94.741601 
27.321738 47.219700 58.854313 59.256966 
43.924105 63.936396 59.200313 70.496120 

2 59 12.92950998 -0.8427213302 6.565675538
0.1921681542 1 -0.4305032268 -0.1674521661 12.31796223 -1.713050893 -1.831684262  2 3 4 5 6
0.546980 -0.404742 -0.031191  0.156980 0.128119 -0.111143
0.921787 0.867503  0.921038 0.965136  1.224956 1.206307  
 22.126468 22.144050 1.010312
 43.522084 43.530781 0.499753
 43.565129 43.551559 -0.779754
 69.567379 69.583717 0.938806
 36.486354 36.498056 0.672387
 75.053938 75.067969 0.806225
 75.247179 75.261283 0.810396
 84.384237 84.359237 -1.436525
22.126468 43.565129 43.522084 71.146020 
89.009523 106.428051 130.445488 132.015928 
36.486354 75.247179 75.053938 84.384237 
69.567379 95.405752 104.246358 105.704667 

2 7 15.77738684 -0.8427213302 6.565675538
0.1921681542 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656  2 3 4 5 6
0.546980 -0.404742 -0.031191  0.156980 0.128119 -0.111143
0.921787 0.867503  0.921038 0.965136  1.224956 1.206307  
 22.126468 22.144050 1.010312
 43.522084 43.530781 0.499753
 43.565129 43.551559 -0.779754
 69.567379 69.583717 0.938806
 36.486354 36.498056 0.672387
 75.053938 75.067969 0.806225
 75.247179 75.261283 0.810396
 84.384237 84.359237 -1.436525
22.126468 43.565129 43.522084 71.146020 
89.009523 106.428051 130.445488 132.015928 
36.486354 75.247179 75.053938 84.384237 
69.567379 95.405752 104.246358 105.704667 

2 52 16.65352785 -0.6924871085 6.057022474
0.25 1 -0.5387925149 -0.1868283001 8.990797127 1.949171187 -2.056484472  2 3 4 5 6
0.591285 -0.370898 -0.161180  0.165571 0.103812 -0.092522
0.960676 0.855101  0.941236 0.961532  1.242298 1.221653  
 16.186637 16.202866 0.929961
 39.650877 39.661722 0.621417
 41.247477 41.234819 -0.725300
 62.301429 62.320924 1.117120
 35.502413 35.512980 0.605531
 71.586063 71.608292 1.273792
 71.823876 71.831262 0.423264
 79.514064 79.486484 -1.580401
16.186637 41.247477 39.650877 62.301429 
85.642328 101.876067 122.398340 125.752245 
35.502413 71.823876 71.586063 79.514064 
66.206808 89.410266 100.101249 101.649854 

2 9 28.81318773 -1.285493837 4.305678511
0.25 1 -0.3955052354 -0.1866083678 3.366299863 0.06794370974 -1.521628339  2 3 4 5 6
0.671052 -0.295493 -0.351377  0.234888 0.022375 -0.024926
0.992255 0.843786  1.057503 1.032092  1.423832 1.455552  
 16.846183 16.868626 1.037520
 32.480903 32.491050 0.469057
 39.756598 39.737952 -0.861989
 40.921329 40.940590 0.890408
 26.649207 26.654794 0.258282
 53.331732 53.335269 0.163483
 60.364765 60.377040 0.567451
 67.710764 67.696604 -0.654600
16.846183 32.480903 39.756598 40.921329 
69.894649 81.483867 98.967905 99.639930 
26.649207 53.331732 60.364765 67.710764 
57.686592 75.296629 83.714470 88.269128