********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 52 9.076282673 -0.3663905366 5.54439718 0.1453085056 1 -0.4158116115 -0.2186788015 13.28244649 -1.012422913 -1.426072246 2 3 4 5 6 0.408991 -0.822224 0.831453 0.188724 0.081445 -0.057879 0.854786 0.734295 0.897837 0.886883 1.219465 1.228815 2.106611 2.133271 0.967280 22.192484 22.170368 -0.802403 33.051084 33.060681 0.348213 43.629943 43.657200 0.988906 27.321738 27.341512 0.717450 47.219700 47.250494 1.117242 58.854313 58.835996 -0.664575 59.256966 59.246564 -0.377397 2.106611 22.192484 33.051084 43.629943 60.907099 75.796344 83.734917 94.741601 27.321738 47.219700 58.854313 59.256966 43.924105 63.936396 59.200313 70.496120 2 53 9.14086064 -0.3663905366 5.54439718 0.1453085056 1 -0.4155542412 -0.220868298 15.61015224 1.192364806 -1.398609336 2 3 4 5 6 0.408991 -0.822224 0.831453 0.188724 0.081445 -0.057879 0.854786 0.734295 0.897837 0.886883 1.219465 1.228815 2.106611 2.133271 0.967280 22.192484 22.170368 -0.802403 33.051084 33.060681 0.348213 43.629943 43.657200 0.988906 27.321738 27.341512 0.717450 47.219700 47.250494 1.117242 58.854313 58.835996 -0.664575 59.256966 59.246564 -0.377397 2.106611 22.192484 33.051084 43.629943 60.907099 75.796344 83.734917 94.741601 27.321738 47.219700 58.854313 59.256966 43.924105 63.936396 59.200313 70.496120 2 59 12.92950998 -0.8427213302 6.565675538 0.1921681542 1 -0.4305032268 -0.1674521661 12.31796223 -1.713050893 -1.831684262 2 3 4 5 6 0.546980 -0.404742 -0.031191 0.156980 0.128119 -0.111143 0.921787 0.867503 0.921038 0.965136 1.224956 1.206307 22.126468 22.144050 1.010312 43.522084 43.530781 0.499753 43.565129 43.551559 -0.779754 69.567379 69.583717 0.938806 36.486354 36.498056 0.672387 75.053938 75.067969 0.806225 75.247179 75.261283 0.810396 84.384237 84.359237 -1.436525 22.126468 43.565129 43.522084 71.146020 89.009523 106.428051 130.445488 132.015928 36.486354 75.247179 75.053938 84.384237 69.567379 95.405752 104.246358 105.704667 2 7 15.77738684 -0.8427213302 6.565675538 0.1921681542 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656 2 3 4 5 6 0.546980 -0.404742 -0.031191 0.156980 0.128119 -0.111143 0.921787 0.867503 0.921038 0.965136 1.224956 1.206307 22.126468 22.144050 1.010312 43.522084 43.530781 0.499753 43.565129 43.551559 -0.779754 69.567379 69.583717 0.938806 36.486354 36.498056 0.672387 75.053938 75.067969 0.806225 75.247179 75.261283 0.810396 84.384237 84.359237 -1.436525 22.126468 43.565129 43.522084 71.146020 89.009523 106.428051 130.445488 132.015928 36.486354 75.247179 75.053938 84.384237 69.567379 95.405752 104.246358 105.704667 2 52 16.65352785 -0.6924871085 6.057022474 0.25 1 -0.5387925149 -0.1868283001 8.990797127 1.949171187 -2.056484472 2 3 4 5 6 0.591285 -0.370898 -0.161180 0.165571 0.103812 -0.092522 0.960676 0.855101 0.941236 0.961532 1.242298 1.221653 16.186637 16.202866 0.929961 39.650877 39.661722 0.621417 41.247477 41.234819 -0.725300 62.301429 62.320924 1.117120 35.502413 35.512980 0.605531 71.586063 71.608292 1.273792 71.823876 71.831262 0.423264 79.514064 79.486484 -1.580401 16.186637 41.247477 39.650877 62.301429 85.642328 101.876067 122.398340 125.752245 35.502413 71.823876 71.586063 79.514064 66.206808 89.410266 100.101249 101.649854 2 9 28.81318773 -1.285493837 4.305678511 0.25 1 -0.3955052354 -0.1866083678 3.366299863 0.06794370974 -1.521628339 2 3 4 5 6 0.671052 -0.295493 -0.351377 0.234888 0.022375 -0.024926 0.992255 0.843786 1.057503 1.032092 1.423832 1.455552 16.846183 16.868626 1.037520 32.480903 32.491050 0.469057 39.756598 39.737952 -0.861989 40.921329 40.940590 0.890408 26.649207 26.654794 0.258282 53.331732 53.335269 0.163483 60.364765 60.377040 0.567451 67.710764 67.696604 -0.654600 16.846183 32.480903 39.756598 40.921329 69.894649 81.483867 98.967905 99.639930 26.649207 53.331732 60.364765 67.710764 57.686592 75.296629 83.714470 88.269128