********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 40 9.056477176 -0.3463267577 5.545652527 0.145309 1 -0.4190361896 -0.2172698416 7.269613276 -0.9983734333 -1.414387471 2 3 4 5 6 0.406713 -0.853427 0.890956 0.188953 0.079459 -0.054420 0.853397 0.732340 0.898127 0.885263 1.220880 1.227797 1.002403 1.029301 0.970694 21.479219 21.457865 -0.770619 29.189764 29.204942 0.547756 42.851493 42.876468 0.901311 27.263198 27.283120 0.718933 46.709906 46.740810 1.115263 58.349983 58.333457 -0.596406 59.103893 59.091643 -0.442086 2 40 9.107045938 -0.3463267577 5.545652527 0.145309 1 -0.4199077473 -0.2184249423 7.13493324 1.19558205 -1.406388579 2 3 4 5 6 0.406713 -0.853427 0.890956 0.188953 0.079459 -0.054420 0.853397 0.732340 0.898127 0.885263 1.220880 1.227797 1.002403 1.029301 0.970694 21.479219 21.457865 -0.770619 29.189764 29.204942 0.547756 42.851493 42.876468 0.901311 27.263198 27.283120 0.718933 46.709906 46.740810 1.115263 58.349983 58.333457 -0.596406 59.103893 59.091643 -0.442086 2 46 13.32776117 -0.8704624313 6.846982449 0.192168 1 -0.4278176021 -0.1575150806 12.46776921 -1.822558439 -1.855371189 2 3 4 5 6 0.553216 -0.396447 -0.046118 0.149344 0.136951 -0.118752 0.922980 0.874195 0.918886 0.963280 1.220553 1.186166 23.943467 23.960088 1.007288 45.636985 45.646577 0.581322 46.027820 46.014385 -0.814279 73.219644 73.237775 1.098852 38.157900 38.169407 0.697390 78.743975 78.756361 0.750700 78.917302 78.932971 0.949670 88.472494 88.447585 -1.509587 2 27 15.7774642 -0.8704624313 6.846982449 0.192168 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656 2 3 4 5 6 0.553216 -0.396447 -0.046118 0.149344 0.136951 -0.118752 0.922980 0.874195 0.918886 0.963280 1.220553 1.186166 23.943467 23.960088 1.007288 45.636985 45.646577 0.581322 46.027820 46.014385 -0.814279 73.219644 73.237775 1.098852 38.157900 38.169407 0.697390 78.743975 78.756361 0.750700 78.917302 78.932971 0.949670 88.472494 88.447585 -1.509587 2 66 13.58549928 -7.903709352 8.184855262 0.25 1 0.1219660067 -0.1833394084 29.96394772 -2.726751226 -2.298496263 2 3 4 5 6 0.764750 -0.424023 -0.104217 0.119274 0.205406 -0.217580 1.019101 1.028731 0.980546 1.081008 1.279926 1.221880 62.620178 62.630850 1.068881 99.998881 100.024358 2.551491 108.793500 108.772786 -2.074554 114.035124 114.039350 0.423312 52.231036 52.237757 0.673154 104.180120 104.185193 0.508109 137.079076 137.088466 0.940405 155.576747 155.582947 0.621015 2 76 14.61148337 -7.903709352 8.184855262 0.25 1 -0.1617555867 -0.1305642589 23.83042198 2.771593629 -2.303573976 2 3 4 5 6 0.764750 -0.424023 -0.104217 0.119274 0.205406 -0.217580 1.019101 1.028731 0.980546 1.081008 1.279926 1.221880 62.620178 62.630850 1.068881 99.998881 100.024358 2.551491 108.793500 108.772786 -2.074554 114.035124 114.039350 0.423312 52.231036 52.237757 0.673154 104.180120 104.185193 0.508109 137.079076 137.088466 0.940405 155.576747 155.582947 0.621015