********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 8 17.24049203 -2.561940474 5.617782501 0.032492 1 0.017964 -0.15 10.625132 -0.850055 -0.898423 2 3 4 5 6 0.359085 -0.494468 0.266567 0.171144 0.157198 -0.162065 0.761942 0.685193 0.855940 0.836183 1.187659 1.161909 27.199547 27.233246 1.087689 31.508422 31.518230 0.316539 36.096433 36.072083 -0.785914 52.938540 52.940728 0.070625 23.543393 23.556219 0.413949 51.867535 51.888276 0.669440 56.265432 56.269906 0.144401 63.084748 63.091652 0.222845 2 77 9.589074017 -2.356513931 6.50813295 0.032492 1 0.1512221034 -0.1490232265 5.892990335 1.424834272 -1.023459765 2 3 4 5 6 0.359362 -0.518366 0.329972 0.156356 0.153492 -0.156682 0.753657 0.723342 0.824613 0.844184 1.139777 1.120398 30.390506 30.418435 1.045084 38.355933 38.374380 0.690292 46.308059 46.286077 -0.822558 60.517639 60.546312 1.072969 26.507106 26.519466 0.462515 61.216600 61.239356 0.851527 65.095492 65.096817 0.049555 74.381965 74.388973 0.262249 2 77 8.005249629 -0.9682744526 6.682339826 0.051777 1 -0.2043830481 -0.1342964957 803.2484776 -1.099235001 -1.167395575 2 3 4 5 6 0.352827 -0.547604 0.409373 0.151537 0.173263 -0.159301 0.773208 0.734617 0.825826 0.850154 1.129849 1.115713 18.040084 18.067372 1.029405 30.112397 30.089602 -0.859915 39.481266 39.494812 0.510987 52.892890 52.895765 0.108465 29.088813 29.108432 0.740091 55.359867 55.385118 0.952571 67.268930 67.262272 -0.251147 69.294130 69.298203 0.153649 2 72 8.113907948 -0.9682744526 6.682339826 0.051777 1 -0.2036045061 -0.133495569 608.0962043 1.384892641 -1.219489727 2 3 4 5 6 0.352827 -0.547604 0.409373 0.151537 0.173263 -0.159301 0.773208 0.734617 0.825826 0.850154 1.129849 1.115713 18.040084 18.067372 1.029405 30.112397 30.089602 -0.859915 39.481266 39.494812 0.510987 52.892890 52.895765 0.108465 29.088813 29.108432 0.740091 55.359867 55.385118 0.952571 67.268930 67.262272 -0.251147 69.294130 69.298203 0.153649 2 76 8.256646481 -0.9615507755 5.696787431 0.076429 1 -0.2402945268 -0.1526545791 4.177843016 -0.9325082477 -1.187495529 2 3 4 5 6 0.391987 -0.526932 0.331579 0.177336 0.132881 -0.129113 0.807887 0.729183 0.869277 0.875642 1.188423 1.201013 14.956668 14.986334 1.059947 27.028459 27.044241 0.563862 28.742663 28.721652 -0.750710 45.379723 45.404002 0.867479 26.328837 26.344399 0.556009 51.142116 51.164298 0.792538 59.478041 59.478200 0.005676 63.342446 63.345333 0.103153 2 39 9.67475553 -0.9615507755 5.696787431 0.076429 1 -0.2146527716 -0.141147152 4.081307346 1.183335338 -1.126212316 2 3 4 5 6 0.391987 -0.526932 0.331579 0.177336 0.132881 -0.129113 0.807887 0.729183 0.869277 0.875642 1.188423 1.201013 14.956668 14.986334 1.059947 27.028459 27.044241 0.563862 28.742663 28.721652 -0.750710 45.379723 45.404002 0.867479 26.328837 26.344399 0.556009 51.142116 51.164298 0.792538 59.478041 59.478200 0.005676 63.342446 63.345333 0.103153 2 15 23.19009582 -1.413433001 5.22847573 0.10724 1 -0.2195095704 -0.1453107482 3.709317781 -0.4550735286 -1.660747812 2 3 4 5 6 0.481833 -0.448855 0.113024 0.215803 0.062090 -0.065720 0.860499 0.827195 0.861290 0.998225 1.149081 1.384755 19.533392 19.558381 1.007283 30.129662 30.142678 0.524638 35.248134 35.231545 -0.668699 44.938852 44.956136 0.696680 26.470447 26.479860 0.379446 56.466533 56.484219 0.712923 58.005089 58.006459 0.055212 67.543669 67.556005 0.497260 2 39 10.84128857 -1.387216353 5.599572806 0.10724 1 -0.222604144 -0.147045432 6.863235666 1.255939794 -1.214752763 2 3 4 5 6 0.479157 -0.449403 0.114164 0.184833 0.110707 -0.117517 0.859783 0.796817 0.932128 0.937748 1.271434 1.261469 25.049772 25.074089 1.043876 34.166248 34.174231 0.342735 37.340526 37.324328 -0.695336 54.689001 54.708804 0.850107 28.309507 28.319837 0.443468 60.251355 60.271415 0.861180 61.975457 61.976279 0.035256 72.065277 72.073138 0.337471