********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 3 74 7.028295042 -1.414912057 7.142345531 0.001968 1 -0.05223870097 -0.1122243532 278.200011 -0.6600761893 -0.690976486 2 3 4 5 6 0.224200 -0.477851 0.334689 0.140460 0.232644 -0.230893 0.652419 0.639389 0.747817 0.768461 1.054429 1.042253 16.816948 16.858018 1.052254 26.420653 26.389610 -0.795363 35.272417 35.296056 0.605662 45.422041 45.427872 0.149407 24.475810 24.505122 0.751013 45.858998 45.891429 0.830919 59.678483 59.678021 -0.011858 63.017461 63.043650 0.670996 3 66 7.131546458 -1.414912057 7.142345531 0.001968 1 -0.05195761284 -0.1031366826 207.662653 1.089516709 -0.8354347439 2 3 4 5 6 0.224200 -0.477851 0.334689 0.140460 0.232644 -0.230893 0.652419 0.639389 0.747817 0.768461 1.054429 1.042253 16.816948 16.858018 1.052254 26.420653 26.389610 -0.795363 35.272417 35.296056 0.605662 45.422041 45.427872 0.149407 24.475810 24.505122 0.751013 45.858998 45.891429 0.830919 59.678483 59.678021 -0.011858 63.017461 63.043650 0.670996 2 60 10.01431106 -2.279917079 6.300295374 0.007919 1 0.0354723008 -0.1461402332 47.38166316 -0.6823940797 -0.7106317119 2 3 4 5 6 0.268836 -0.483103 0.293890 0.160719 0.187534 -0.193025 0.689759 0.653458 0.795346 0.801730 1.119701 1.115112 23.680815 23.720097 1.064543 32.220017 32.229778 0.264540 33.559820 33.538829 -0.568851 49.557418 49.561857 0.120274 22.866213 22.886124 0.539588 48.114544 48.142673 0.762283 58.033831 58.051415 0.476537 60.264321 60.270261 0.160985 5 105 9.59986407 -2.522730708 6.880868838 0.007919 1 0.02082102972 -0.1156207797 2927.277017 1.194581767 -0.8934333006 2 3 4 5 6 0.282724 -0.480914 0.300231 0.146595 0.173393 -0.170945 0.693565 0.663012 0.764603 0.784412 1.065644 1.054048 27.130628 27.164768 1.062661 35.077621 35.063344 -0.444394 36.565454 36.572197 0.209887 54.599013 54.602204 0.099339 25.372480 25.390580 0.563389 53.742115 53.767814 0.799906 63.775643 63.787794 0.378214 66.486662 66.491450 0.149026 2 79 8.465895302 -1.549430047 7.661887726 0.018006 1 -0.1030353252 -0.09035511364 329.5846958 -1.069045967 -1.026017112 2 3 4 5 6 0.312752 -0.503225 0.351981 0.129827 0.220952 -0.205029 0.720891 0.729392 0.777155 0.823674 1.071945 1.044704 25.195386 25.222552 1.041565 33.588175 33.566379 -0.835657 42.072439 42.090525 0.693435 58.305695 58.308068 0.090969 30.391317 30.410290 0.727444 60.250558 60.274585 0.921199 73.300983 73.292651 -0.319423 74.617104 74.622060 0.190029 3 69 8.401821429 -1.542903956 7.733412154 0.018006 1 -0.1043965222 -0.08882431253 136.8338989 1.400610977 -1.11422203 2 3 4 5 6 0.313150 -0.503945 0.354465 0.129515 0.189316 -0.174669 0.720753 0.709443 0.760482 0.801657 1.043418 1.019347 25.308030 25.334772 1.036170 33.758530 33.737133 -0.829103 42.354502 42.372688 0.704662 58.761928 58.764260 0.090352 30.682750 30.701725 0.735230 60.784742 60.808734 0.929657 73.977908 73.968979 -0.346000 75.256551 75.260536 0.154422 3 79 6.276231646 -1.645005304 7.481099532 0 1 -0.01108095727 -0.113120342 1033.363311 -0.6060104654 -0.6048452133 2 3 4 5 6 0.195494 -0.444092 0.282440 0.133625 0.249600 -0.247100 0.618209 0.616896 0.719756 0.744045 1.023595 1.009480 17.340943 17.385744 1.048351 27.539713 27.509600 -0.704661 35.315358 35.342178 0.627591 45.761764 45.768972 0.168678 23.848855 23.881526 0.764515 45.289272 45.326644 0.874504 59.434314 59.437905 0.084041 63.279609 63.321488 0.979988 2 79 6.370097903 -1.645005304 7.481099532 0 1 -0.00205507448 -0.1104811629 9098.032034 1.036952924 -0.7462338851 2 3 4 5 6 0.195494 -0.444092 0.282440 0.133625 0.249600 -0.247100 0.618209 0.616896 0.719756 0.744045 1.023595 1.009480 17.340943 17.385744 1.048351 27.539713 27.509600 -0.704661 35.315358 35.342178 0.627591 45.761764 45.768972 0.168678 23.848855 23.881526 0.764515 45.289272 45.326644 0.874504 59.434314 59.437905 0.084041 63.279609 63.321488 0.979988