********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.2; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 1 35 24.033975 -1.288020 4.789746 0.145309 1.000000 -0.304065 -0.102077 1.997472 -0.735848 -1.235935 2 3 4 5 6 0.547633 -0.413077 0.028515 0.208847 0.073153 -0.075717 0.896440 0.792054 0.976655 0.961564 1.331171 1.340806 12.694110 12.711061 0.711407 27.406157 27.412165 0.252143 34.140981 34.135580 -0.226694 39.686382 39.695562 0.385264 25.805264 25.811033 0.242137 54.356684 54.362431 0.241195 56.351749 56.358588 0.287012 63.554829 63.542963 -0.497994 1 32 24.052462 -1.288020 4.789746 0.145309 1.000000 -0.303845 -0.101958 1.940386 0.948378 -1.237684 2 3 4 5 6 0.547633 -0.413077 0.028515 0.208847 0.073153 -0.075717 0.896440 0.792054 0.976655 0.961564 1.331171 1.340806 12.694110 12.711061 0.711407 27.406157 27.412165 0.252143 34.140981 34.135580 -0.226694 39.686382 39.695562 0.385264 25.805264 25.811033 0.242137 54.356684 54.362431 0.241195 56.351749 56.358588 0.287012 63.554829 63.542963 -0.497994 2 41 23.560958 -1.652989 5.035836 0.192168 1.000000 -0.286379 -0.088340 2.952262 -1.069252 -1.440141 2 3 4 5 6 0.649528 -0.376345 -0.105482 0.201059 0.085184 -0.089127 0.953129 0.879231 1.018532 1.024882 1.375396 1.366135 19.724420 19.738407 0.732001 39.079976 39.084508 0.237165 45.177007 45.172994 -0.210045 46.529419 46.537492 0.422497 29.584972 29.588973 0.209392 60.529244 60.532008 0.144701 69.128952 69.135498 0.342550 77.070609 77.061812 -0.460355 2 59 22.496519 -1.682083 5.299154 0.192168 1.000000 -0.274952 -0.099761 2.438433 1.467683 -1.561128 2 3 4 5 6 0.648302 -0.378495 -0.106180 0.190896 0.097755 -0.106069 0.954097 0.887397 1.001901 1.020324 1.346610 1.336386 19.070159 19.087267 0.940423 41.654529 41.660775 0.343354 47.944107 47.945605 0.082340 48.242603 48.244233 0.089623 31.156316 31.160862 0.249867 63.747917 63.751075 0.173556 72.919268 72.926719 0.409534 81.699193 81.689976 -0.506641