********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.2; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 59 16.649040 -0.604688 22.640180 0.032492 1.000000 1.057480 -0.150013 74.025305 -3.096539 -1.674353 2 3 4 5 6 0.087300 -1.369728 2.243388 0.046140 0.059293 0.027661 0.465082 0.372076 0.358632 0.392664 0.500960 0.447943 74.646955 74.668635 0.685613 79.988412 80.065245 2.429759 130.568690 130.552258 -0.519630 146.580582 146.587536 0.219906 36.036789 36.065996 0.923626 114.761704 114.775813 0.446168 156.371499 156.391821 0.642655 171.362232 171.372388 0.321161 2 15 23.491551 -0.604688 22.640180 0.032492 1.000000 -0.006705 -0.149275 63.022643 0.736156 -0.851703 2 3 4 5 6 0.087300 -1.369728 2.243388 0.046140 0.059293 0.027661 0.465082 0.372076 0.358632 0.392664 0.500960 0.447943 74.646955 74.668635 0.685613 79.988412 80.065245 2.429759 130.568690 130.552258 -0.519630 146.580582 146.587536 0.219906 36.036789 36.065996 0.923626 114.761704 114.775813 0.446168 156.371499 156.391821 0.642655 171.362232 171.372388 0.321161 5 103 10.748890 -1.227740 6.810474 0.051777 1.000000 -0.165003 -0.149878 85.028894 -1.161703 -1.210790 2 3 4 5 6 0.363242 -0.506384 0.296546 0.148225 0.181126 -0.170275 0.781687 0.748054 0.828801 0.858074 1.130818 1.113675 23.959850 23.996366 1.445376 35.258861 35.228870 -1.187091 40.671111 40.684308 0.522371 57.998987 58.002197 0.127035 29.995209 30.014545 0.765356 59.613205 59.639868 1.055368 69.413535 69.416876 0.132229 73.843998 73.854058 0.398174 2 71 8.827403 -1.015904 6.270622 0.051777 1.000000 -0.194318 -0.143852 5.107384 1.206308 -1.012472 2 3 4 5 6 0.352168 -0.537404 0.378872 0.167059 0.139120 -0.139139 0.775093 0.723394 0.854751 0.857014 1.178550 1.158039 16.514323 16.547911 1.186765 29.289113 29.257687 -1.110394 30.418966 30.440807 0.771696 50.271209 50.301978 1.087148 27.332232 27.351200 0.670199 52.439464 52.464133 0.871621 63.321506 63.318587 -0.103170 65.629118 65.638642 0.336486 2 9 19.739854 -1.189803 5.229813 0.076429 1.000000 -0.210952 -0.146851 4.137146 -0.742131 -1.646500 2 3 4 5 6 0.410825 -0.491724 0.245144 0.192218 0.111264 -0.114304 0.815763 0.721496 0.803855 0.887725 1.071355 1.249366 16.979005 17.006661 0.950721 26.029361 26.040424 0.380312 29.340524 29.323404 -0.588537 43.112940 43.134006 0.724203 24.530899 24.543390 0.429378 49.602669 49.621683 0.653644 55.227750 55.230126 0.081681 60.573458 60.578520 0.174002 2 8 20.484073 -1.189803 5.229813 0.076429 1.000000 -0.210952 -0.146851 4.137146 0.742131 -1.646500 2 3 4 5 6 0.410825 -0.491724 0.245144 0.192218 0.111264 -0.114304 0.815763 0.721496 0.803855 0.887725 1.071355 1.249366 16.979005 17.006661 0.950721 26.029361 26.040424 0.380312 29.340524 29.323404 -0.588537 43.112940 43.134006 0.724203 24.530899 24.543390 0.429378 49.602669 49.621683 0.653644 55.227750 55.230126 0.081681 60.573458 60.578520 0.174002 2 26 20.124598 -1.509508 5.051363 0.107240 1.000000 -0.205190 -0.142119 5.137906 -0.780352 -1.147787 2 3 4 5 6 0.489030 -0.447547 0.107032 0.199959 0.093611 -0.097685 0.863085 0.772305 0.946804 0.936385 1.294814 1.301795 22.110110 22.131848 0.859150 30.798263 30.809276 0.435276 35.055027 35.039008 -0.633125 46.600308 46.617461 0.677957 25.681620 25.690263 0.341599 55.090712 55.104512 0.545428 56.592947 56.596792 0.151975 66.147260 66.150421 0.124927 2 26 20.238040 -1.509508 5.051363 0.107240 1.000000 -0.208900 -0.144201 5.302754 0.951482 -1.129672 2 3 4 5 6 0.489030 -0.447547 0.107032 0.199959 0.093611 -0.097685 0.863085 0.772305 0.946804 0.936385 1.294814 1.301795 22.110110 22.131848 0.859150 30.798263 30.809276 0.435276 35.055027 35.039008 -0.633125 46.600308 46.617461 0.677957 25.681620 25.690263 0.341599 55.090712 55.104512 0.545428 56.592947 56.596792 0.151975 66.147260 66.150421 0.124927