********* Eigenvalues for the 2+1 transverse lattice ********* Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 Use chi^2 fit with 13 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,4) ( 1,-32/2,4,4) ( 1,-32/2,2,5) ( 1,-34/2,2,4) ( 1,-44/2,2,5) ( 1,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); relative scale error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=3 and error 0.3; ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=1 and error 0.3; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 7 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; Roundness with calculated and derived values (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 1 65 23.771227 -1.242019 4.655595 0.145309 1.000000 -0.308951 -0.109311 1.746173 -0.829963 -1.754477 2 3 4 5 6 0.540390 -0.399976 -0.010646 0.215428 -0.003887 0.058249 0.966254 0.989352 0.837656 0.780556 11.218598 11.236618 0.725364 25.849991 25.856556 0.264290 32.649075 32.643120 -0.239721 38.138772 38.147929 0.368621 25.005646 25.011663 0.242174 52.669989 52.676431 0.259326 54.224322 54.231017 0.269514 61.272885 61.260921 -0.481572 1 84 23.437127 -1.573144 4.922727 0.192168 1.000000 -0.300054 -0.094121 2.769860 -1.246545 -1.910751 2 3 4 5 6 0.641586 -0.359447 -0.150827 0.205922 -0.008905 0.078384 1.015204 1.027169 0.886175 0.848031 18.448284 18.462910 0.739108 36.976048 36.980834 0.241822 43.307158 43.302737 -0.223387 45.005765 45.014109 0.421652 28.822781 28.826963 0.211335 59.014027 59.016894 0.144853 66.746705 66.753778 0.357438 74.390592 74.381533 -0.457762 5 102 21.572318 -1.717766 5.803756 0.250000 1.000000 -0.318617 -0.097437 4.776447 -2.084921 -2.464973 2 3 4 5 6 0.735400 -0.326724 -0.275776 0.173070 -0.014197 0.124559 0.997911 1.012993 0.906931 0.888929 30.074731 30.088589 0.946307 52.394647 52.399644 0.341223 59.851807 59.854394 0.176662 60.214282 60.216746 0.168236 36.770252 36.774211 0.270372 73.068822 73.071447 0.179263 88.529284 88.536780 0.511920 97.596339 97.587717 -0.588830