********* Eigenvalues for the 2+1 transverse lattice ********* Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 Use chi^2 fit with 13 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,4) ( 1,-32/2,4,4) ( 1,-32/2,2,5) ( 1,-34/2,2,4) ( 1,-44/2,2,5) ( 1,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); relative scale error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=3 and error 0.3; ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=1 and error 0.3; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 7 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; Roundness with calculated and derived values (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 5 101 7.293450 -0.721965 12.950171 0.032492 1.000000 0.903933 -0.244132 3.711137 3.329002 -3.008769 2 3 4 5 6 0.126466 -1.134363 1.805147 0.079718 -0.220169 0.500524 0.259225 0.309050 0.385347 0.261724 35.614408 35.674135 1.565082 49.611436 49.654931 1.139741 80.033185 80.061156 0.732940 94.426213 94.463060 0.965543 26.619789 26.644093 0.636868 75.858169 75.888101 0.784335 101.695881 101.709666 0.361225 104.389479 104.393829 0.113998 5 102 19.351784 -1.222444 5.165700 0.051777 1.000000 -0.170410 -0.140862 4.676319 -0.822537 -1.553669 2 3 4 5 6 0.364243 -0.491763 0.271647 0.194665 0.008254 0.080212 0.845133 0.869036 0.731339 0.670104 16.265767 16.294605 0.868178 25.210910 25.222998 0.363897 26.372945 26.352231 -0.623612 42.400276 42.424351 0.724762 22.777932 22.791961 0.422329 45.234096 45.253446 0.582561 52.642024 52.643741 0.051678 55.913274 55.919872 0.198632 2 35 19.329163 -1.247786 5.057516 0.076429 1.000000 -0.205171 -0.141581 4.400172 -0.592937 -2.006211 2 3 4 5 6 0.414841 -0.469739 0.194616 0.213285 0.008197 0.043506 0.812595 0.962541 0.737447 0.747733 17.368190 17.393548 0.851255 25.795893 25.806496 0.355954 28.963248 28.946808 -0.551868 42.512896 42.532768 0.667090 23.807462 23.818915 0.384466 48.580356 48.598138 0.596919 53.535843 53.538042 0.073830 59.099920 59.103972 0.136042 2 14 11.846392 -1.462226 4.740495 0.107240 1.000000 -0.181134 -0.201526 8.240393 1.373350 -2.259240 2 3 4 5 6 0.465932 -0.430044 0.034058 0.203374 -0.059389 0.165417 0.828648 0.875497 0.766938 0.678245 22.941089 22.972147 1.097561 29.936189 29.883876 -1.848754 33.916338 33.953527 1.314265 48.820768 48.841871 0.745786 23.919875 23.930732 0.383707 51.145489 51.164302 0.664853 52.660165 52.664527 0.154179 61.850897 61.850918 0.000743