********* Eigenvalues for the 2+1 transverse lattice ********* Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 Use chi^2 fit with 13 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,4) ( 1,-32/2,4,4) ( 1,-32/2,2,5) ( 1,-34/2,2,4) ( 1,-44/2,2,5) ( 1,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); relative scale error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=3 and error 0.3; ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=1 and error 0.3; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 7 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; Roundness with calculated and derived values (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 5 103 6.823992 -1.657319 7.977159 0.000000 1.000000 0.013503 -0.135778 38.420953 -0.982852 -1.281813 2 3 4 5 6 0.184755 -0.440726 0.282539 0.126013 0.019620 0.187638 0.624613 0.634919 0.554929 0.522235 18.549223 18.605526 1.327672 31.209020 31.178695 -0.715115 37.228493 37.252725 0.571431 49.440316 49.449876 0.225433 24.938779 24.977018 0.901730 47.911686 47.956893 1.066027 63.379471 63.389068 0.226291 67.058303 67.104256 1.083618 5 103 8.489174 -1.364067 7.116923 0.001968 1.000000 -0.016976 -0.156721 10.872881 -0.819493 -0.949569 2 3 4 5 6 0.203239 -0.468565 0.305570 0.153338 0.030205 0.127477 0.769507 0.732765 0.629109 0.583456 16.169322 16.228261 1.364033 29.183868 29.152934 -0.715893 33.295124 33.310642 0.359132 45.848645 45.858519 0.228523 23.692069 23.728315 0.838845 44.752627 44.794391 0.966542 59.366235 59.372878 0.153733 62.059421 62.099434 0.926021 5 101 16.955253 -1.911534 4.939579 0.007919 1.000000 0.078435 -0.212695 3.557522 -0.244203 -1.065878 2 3 4 5 6 0.235358 -0.493614 0.306443 0.205803 0.039296 -0.001096 0.792653 0.829212 0.654190 0.573272 15.288752 15.341320 0.977826 19.858935 19.877154 0.338898 27.255988 27.224625 -0.583399 36.550021 36.600158 0.932605 17.139930 17.161123 0.394225 35.653812 35.683501 0.552240 44.742569 44.761309 0.348591 45.951552 45.961075 0.177142 1 35 9.306779 -1.559263 6.903602 0.018006 1.000000 -0.053670 -0.159332 778.188670 -1.208153 -1.647082 2 3 4 5 6 0.285919 -0.477800 0.268018 0.145758 0.011875 0.156202 0.722591 0.738049 0.651288 0.610169 23.300093 23.348677 1.534351 34.542972 34.508298 -1.095063 37.998482 38.013901 0.486955 53.897121 53.902705 0.176351 26.794516 26.819274 0.781898 53.576401 53.608982 1.028960 65.694821 65.702998 0.258241 67.732679 67.749741 0.538857