******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = ( 0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-32/2,2,4) ( 0,-32/2,4,4) ( 0,-32/2,2,5) ( 0,-34/2,2,4) ( 0,-44/2,2,5) ( 0,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); with relative error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) , L=3 and error 0.3 (all in G^2 N units). p-extrapolation using (n,K,p) = ( 1,19/2,3) ( 1,25/2,3) ( 1,39/2,3) ( 1,19/2,5) ( 1,25/2,5) ( 1,23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=3 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 51 20.074371 -1.462479 7.886356 0.000000 1.000000 -0.026002 -0.112324 451.491744 1.436937 2 3 4 5 0.189946 -0.446552 0.307827 0.235859 -2.077907 0.033508 -1.265567 -0.994528 16.524200 16.572241 1.151434 27.481278 27.447546 -0.808459 37.029681 37.059545 0.715754 46.386478 46.418412 0.765380 25.098506 25.135151 0.878310 46.511848 46.551403 0.948049 61.621339 61.624767 0.082159 67.114888 67.186620 1.719267 1 86 12.441060 -1.554766 6.455078 0.001968 1.000000 0.005452 -0.161495 625.366041 -0.152124 2 3 4 5 0.207364 -0.462695 0.288175 0.226867 -0.054216 0.099503 0.923382 0.922327 16.524200 16.575430 1.097190 28.050589 28.023108 -0.588548 32.056298 32.072729 0.351896 43.079492 43.088361 0.189960 21.475835 21.506823 0.663666 41.663386 41.701217 0.810219 54.760872 54.765595 0.101158 56.403582 56.440848 0.798111 2 56 14.085385 -1.343311 6.404621 0.007919 1.000000 -0.050322 -0.156888 1388.100548 -0.095116 2 3 4 5 0.238097 -0.483928 0.313157 0.230450 -0.046474 0.090526 0.983618 0.972740 16.524200 16.572973 1.189991 27.737309 27.702953 -0.838247 33.255618 33.274345 0.456901 44.199069 44.206376 0.178298 23.010468 23.039377 0.705324 43.816588 43.850697 0.832220 57.089611 57.084578 -0.122803 58.270297 58.306035 0.871969 2 40 18.045486 -1.271549 6.065281 0.018006 1.000000 -0.119628 -0.110098 73.095587 -0.029268 2 3 4 5 0.291292 -0.506018 0.367646 0.233367 -0.040365 0.081150 1.040057 1.014121 16.524200 16.551375 0.768203 24.747134 24.725001 -0.625679 32.763622 32.778847 0.430387 43.673800 43.676721 0.082560 23.702575 23.721726 0.541378 45.151038 45.173514 0.635379 57.058020 57.055237 -0.078667 57.446424 57.447829 0.039739 1 228 11.777001 -1.278088 5.163803 0.032492 1.000000 -0.017895 -0.282032 71.414455 -0.984411 2 3 4 5 0.273123 -0.506267 0.234682 0.236210 -0.280711 0.068430 0.651216 0.689400 16.524200 16.587204 1.421734 30.984057 30.940368 -0.985871 28.933384 28.950445 0.384987 42.395034 42.404344 0.210085 20.360737 20.386966 0.591873 40.416114 40.451883 0.807167 50.035748 50.049947 0.320428 52.671397 52.680166 0.197879 2 34 9.921162 -1.260733 5.367722 0.051777 1.000000 -0.146483 -0.180874 3.863045 -0.514688 2 3 4 5 0.350584 -0.487344 0.237068 0.239082 -0.111196 0.098918 0.953073 0.956343 16.524200 16.567777 1.312086 29.067512 29.036875 -0.922468 25.076596 25.093107 0.497134 42.516663 42.547226 0.920245 23.503742 23.521245 0.526985 46.731470 46.755636 0.727640 54.639613 54.644801 0.156217 58.357694 58.366485 0.264694 2 34 10.467442 -1.200625 4.946663 0.076429 1.000000 -0.183774 -0.204482 4.497799 -1.014121 2 3 4 5 0.387659 -0.474982 0.171428 0.240176 -0.238177 0.068864 0.765492 0.810482 16.524200 16.565765 1.275302 29.181888 29.151872 -0.920952 25.224809 25.239881 0.462441 41.497221 41.525910 0.880234 22.990542 23.005954 0.472858 46.208917 46.231752 0.700616 52.105582 52.111134 0.170370 57.280859 57.284661 0.116649 2 46 16.298587 -1.397473 3.594646 0.107240 1.000000 -0.183605 -0.224765 7.610274 -0.899282 2 3 4 5 0.452337 -0.432177 0.028013 0.243324 -0.187822 0.104062 0.905648 0.776692 16.524200 16.552124 0.726467 25.531589 25.509278 -0.580437 22.159641 22.168101 0.220077 36.076084 36.094875 0.488876 18.020486 18.029780 0.241790 38.167803 38.184774 0.441507 39.648059 39.650955 0.075332 46.356023 46.354427 -0.041509 2 50 21.062873 -1.769665 4.276145 0.145309 1.000000 -0.203064 -0.139567 2.997968 -1.574867 2 3 4 5 0.566838 -0.405490 -0.032596 0.249060 -0.427579 0.164112 0.671791 0.705716 16.524200 16.542931 0.726439 30.978985 30.990374 0.441706 35.386700 35.374320 -0.480145 38.140629 38.152014 0.441531 23.456524 23.462103 0.216376 49.364234 49.368616 0.169960 53.794815 53.802746 0.307571 62.455676 62.457784 0.081759 2 62 22.670301 -2.069586 3.707222 0.192168 1.000000 -0.186819 -0.135258 3.344413 -1.909064 2 3 4 5 0.658954 -0.391871 -0.107526 0.256316 -0.572112 0.266298 0.607442 0.579712 16.524200 16.538057 0.541607 33.088938 33.098309 0.366296 35.531947 35.540742 0.343732 36.542611 36.532723 -0.386490 21.993026 21.996627 0.140731 44.949132 44.951727 0.101409 52.967743 52.973379 0.220272 60.625061 60.626593 0.059909 2 46 25.558460 -2.257070 2.929503 0.250000 1.000000 -0.171446 -0.126903 4.994164 -2.375661 2 3 4 5 0.761097 -0.384117 -0.169707 0.266484 -0.793642 0.416575 0.486274 0.362281 16.524200 16.532159 0.283918 32.291266 32.297582 0.225319 30.566996 30.573762 0.241387 33.864111 33.857094 -0.250315 18.819685 18.821807 0.075686 37.322784 37.324301 0.054107 47.266697 47.270088 0.120947 53.459506 53.460537 0.036757