******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 2. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.15 2 2 2) (4, 1 & -1, 2 & 1, 0.15 2 2 2). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-32/2,2,4) ( 0,-32/2,4,4) ( 0,-32/2,2,5) ( 0,-34/2,2,4) ( 0,-44/2,2,5) ( 0,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); with relative error 2.5. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) , L=3 and error 3 (all in G^2 N units). p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=3 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 50 2.968480 -1.489993 7.783387 0.000000 1.000000 -0.028305 -0.106503 25.656928 -0.701250 2 3 4 5 0.192894 -0.446089 0.308349 0.217510 -0.279419 0.120965 0.542725 0.736446 16.524200 16.569880 1.097313 26.909653 26.877549 -0.771199 35.918101 35.946054 0.671472 46.149821 46.152613 0.067056 24.877294 24.912116 0.836490 46.187996 46.225638 0.904232 60.958481 60.960341 0.044678 66.530052 66.574055 1.057052 2 46 3.559014 -1.320464 7.527288 0.001968 1.000000 -0.063266 -0.106912 24.562097 0.039963 2 3 4 5 0.221606 -0.478352 0.354879 0.226285 -0.026617 0.068163 0.986898 1.038676 16.524200 16.566002 1.115662 26.530044 26.498036 -0.854298 36.333254 36.357666 0.651562 46.816561 46.822379 0.155274 25.796391 25.827503 0.830370 47.623801 47.656903 0.883489 62.181871 62.180505 -0.036443 66.381427 66.381595 0.004484 2 57 2.912334 -1.069050 8.217869 0.007919 1.000000 -0.116858 -0.090064 599.006747 -0.067746 2 3 4 5 0.255301 -0.525740 0.450941 0.230046 -0.041982 0.085957 0.986574 1.153240 16.524200 16.554262 1.009148 27.198629 27.173839 -0.832176 42.073993 42.097968 0.804800 52.000987 52.004761 0.126664 30.087315 30.116010 0.963253 54.490279 54.519456 0.979439 70.294037 70.283387 -0.357515 73.235832 73.200170 -1.197121 1 101 3.279220 -0.998293 7.702163 0.018006 1.000000 -0.143784 -0.105565 4247.795444 0.003228 2 3 4 5 0.282078 -0.540676 0.455564 0.233251 -0.037969 0.078294 1.043171 1.160711 16.524200 16.554343 1.047820 27.939338 27.914275 -0.871253 41.335167 41.355356 0.701826 52.100671 52.104384 0.129069 29.806277 29.832505 0.911724 54.559431 54.587743 0.984163 69.862959 69.866194 0.112466 71.531625 71.491578 -1.392098 2 30 4.773995 -1.079537 6.765824 0.032492 1.000000 -0.166778 -0.131437 27020.857684 0.329880 2 3 4 5 0.309549 -0.537889 0.412167 0.235901 -0.047491 0.059755 1.142371 1.100437 16.524200 16.556790 1.092067 27.895208 27.867957 -0.913167 38.150378 38.166440 0.538210 49.645265 49.649021 0.125869 27.676548 27.699673 0.774910 51.622393 51.649413 0.905420 65.639306 65.627271 -0.403293 65.657532 65.666335 0.295003 2 36 3.171627 -0.846354 7.319864 0.051777 1.000000 -0.220760 -0.128956 34692.730238 0.771725 2 3 4 5 0.344764 -0.559082 0.441600 0.237668 -0.041545 0.061075 1.160764 1.215829 16.524200 16.550534 1.063327 30.658281 30.636197 -0.891688 42.862285 42.877319 0.607047 55.712741 55.715826 0.124568 31.626055 31.648207 0.894450 58.789373 58.816891 1.111140 72.917719 72.899895 -0.719715 74.107486 74.096328 -0.450504 2 35 3.292932 -0.765826 7.634334 0.076429 1.000000 -0.274247 -0.131436 2036.709796 0.266973 2 3 4 5 0.383399 -0.560618 0.419823 0.239337 -0.039841 0.060330 1.186649 1.310914 16.524200 16.545680 1.005935 33.789086 33.771293 -0.833257 46.539811 46.553303 0.631880 61.165928 61.168483 0.119682 34.851383 34.871833 0.957694 65.186012 65.214220 1.321043 78.400715 78.387369 -0.625018 80.481977 80.454114 -1.304836 1 50 2.932562 -0.712386 7.632171 0.107240 1.000000 -0.330123 -0.142373 6045.652112 0.471584 2 3 4 5 0.423816 -0.546497 0.352890 0.241073 -0.057761 0.063469 1.239751 1.352383 16.524200 16.543580 1.002972 36.547799 36.531865 -0.824661 48.593438 48.605162 0.606737 64.989476 64.991743 0.117288 36.845853 36.864559 0.968110 69.674332 69.704063 1.538701 81.009744 81.002508 -0.374501 83.526486 83.504544 -1.135614 2 77 19.139700 -0.904978 4.340464 0.145309 1.000000 -0.303778 -0.273179 38.593427 -1.740082 2 3 4 5 0.454494 -0.456065 0.032671 0.237842 -0.470631 -0.056521 0.445925 0.512621 16.524200 16.561726 1.184460 28.507293 28.480253 -0.853469 29.352329 29.354643 0.073036 43.886732 43.889831 0.097806 22.527521 22.541175 0.430976 45.226720 45.255343 0.903435 48.303905 48.303722 -0.005799 55.539486 55.490254 -1.553958 1 53 24.949744 -1.093188 3.613945 0.192168 1.000000 -0.303547 -0.325800 6.913813 -3.288363 2 3 4 5 0.528142 -0.371009 -0.231831 0.257637 -1.482288 -0.052527 -0.565164 -0.468209 16.524200 16.561738 1.146373 24.231178 24.244235 0.398733 29.736802 29.706492 -0.925646 36.861563 36.885512 0.731359 20.374349 20.384374 0.306152 42.306877 42.314747 0.240365 43.286779 43.303496 0.510525 52.197566 52.155091 -1.297151 3 65 26.943114 -1.277901 3.036621 0.250000 1.000000 -0.231214 -0.476972 6.741170 -5.794539 2 3 4 5 0.591500 -0.317298 -0.504035 0.325306 -3.831103 0.332341 -2.623581 -2.506916 16.524200 16.562805 1.109448 24.217935 24.242956 0.719055 32.587047 32.587496 0.012903 33.120007 33.109063 -0.314502 18.513855 18.522788 0.256724 37.461188 37.467065 0.168892 41.391098 41.410145 0.547405 49.805723 49.774224 -0.905232