********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 1 93 15.96823058 -0.7771917885 5.47896059 0.1453085056 1 -0.3598574039 -0.2005387301 9080.343077 -1.018872459 -1.348270661 2 3 4 5 6 0.464700 -0.499048 0.193902 0.190776 0.096633 -0.090314 0.876886 0.784990 0.935729 0.933965 1.271771 1.272790 16.524200 16.548876 1.005220 31.445487 31.424538 -0.853414 37.047700 37.055454 0.315851 52.303918 52.306237 0.094495 28.260491 28.274801 0.582944 55.527453 55.558379 1.259818 60.426624 60.423073 -0.144654 66.072083 66.047197 -1.013807 16.524200 31.445487 37.047700 57.858151 67.777236 82.236000 101.112333 102.082701 28.260491 55.527453 60.426624 66.072083 52.303918 74.776479 76.445890 81.477639 1 93 16.0467656 -0.7771917885 5.47896059 0.1453085056 1 -0.3598258831 -0.2005720562 19046.56699 1.232055276 -1.353537691 2 3 4 5 6 0.464700 -0.499048 0.193902 0.190776 0.096633 -0.090314 0.876886 0.784990 0.935729 0.933965 1.271771 1.272790 16.524200 16.548876 1.005220 31.445487 31.424538 -0.853414 37.047700 37.055454 0.315851 52.303918 52.306237 0.094495 28.260491 28.274801 0.582944 55.527453 55.558379 1.259818 60.426624 60.423073 -0.144654 66.072083 66.047197 -1.013807 16.524200 31.445487 37.047700 57.858151 67.777236 82.236000 101.112333 102.082701 28.260491 55.527453 60.426624 66.072083 52.303918 74.776479 76.445890 81.477639 2 20 22.47525178 -0.812474866 4.858515178 0.1921681542 1 -0.4183564981 -0.2179007946 12.13718838 -0.6563267991 -1.306711784 2 3 4 5 6 0.525893 -0.423689 -0.018607 0.216626 0.054174 -0.053715 0.921840 0.802170 1.001600 0.977598 1.363505 1.370423 16.524200 16.547284 0.943687 32.089138 32.070383 -0.766729 32.298584 32.305843 0.296742 51.229858 51.255011 1.028295 26.880888 26.891955 0.452443 54.896012 54.903964 0.325113 55.317374 55.334969 0.719298 63.147579 63.123114 -1.000152 16.524200 32.089138 32.298584 52.547665 65.486133 78.442365 96.601058 97.486426 26.880888 55.317374 54.896012 63.147579 51.229858 71.013903 77.726162 77.807359 2 7 73.51779429 -0.812474866 4.858515178 0.1921681542 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656 2 3 4 5 6 0.525893 -0.423689 -0.018607 0.216626 0.054174 -0.053715 0.921840 0.802170 1.001600 0.977598 1.363505 1.370423 16.524200 16.547284 0.943687 32.089138 32.070383 -0.766729 32.298584 32.305843 0.296742 51.229858 51.255011 1.028295 26.880888 26.891955 0.452443 54.896012 54.903964 0.325113 55.317374 55.334969 0.719298 63.147579 63.123114 -1.000152 16.524200 32.089138 32.298584 52.547665 65.486133 78.442365 96.601058 97.486426 26.880888 55.317374 54.896012 63.147579 51.229858 71.013903 77.726162 77.807359