********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.2; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 1 40 23.985820 -1.312753 4.980563 0.145309 1.000000 -0.297521 -0.104106 2.939484 -0.753365 -1.159651 2 3 4 5 6 0.548865 -0.412648 0.025058 0.208120 0.074586 -0.077257 0.897417 0.821585 0.989589 0.984851 1.352698 1.355435 16.524200 16.540617 0.718072 29.506041 29.512465 0.280981 35.837740 35.831625 -0.267436 42.707190 42.717754 0.462054 26.868967 26.875011 0.264367 56.599972 56.605807 0.255231 58.847216 58.854573 0.321808 66.506226 66.494012 -0.534227 1 35 23.999175 -1.312753 4.980563 0.145309 1.000000 -0.296870 -0.104063 2.938003 0.956306 -1.156176 2 3 4 5 6 0.548865 -0.412648 0.025058 0.208120 0.074586 -0.077257 0.897417 0.821585 0.989589 0.984851 1.352698 1.355435 16.524200 16.540617 0.718072 29.506041 29.512465 0.280981 35.837740 35.831625 -0.267436 42.707190 42.717754 0.462054 26.868967 26.875011 0.264367 56.599972 56.605807 0.255231 58.847216 58.854573 0.321808 66.506226 66.494012 -0.534227 1 40 23.596111 -1.476376 4.990062 0.192168 1.000000 -0.319420 -0.093013 2.340423 -0.926246 -1.349099 2 3 4 5 6 0.635142 -0.365028 -0.123945 0.207384 0.073715 -0.076856 0.947886 0.879128 1.025435 1.031517 1.389861 1.386598 16.524200 16.539441 0.772866 35.665803 35.670408 0.233499 42.723023 42.718910 -0.208558 44.577475 44.585643 0.414187 29.087886 29.092225 0.219994 59.619339 59.622301 0.150189 66.631243 66.638800 0.383233 73.994609 73.984882 -0.493308 1 28 23.605008 -1.476376 4.990062 0.192168 1.000000 -0.319318 -0.093305 2.355411 1.097318 -1.336174 2 3 4 5 6 0.635142 -0.365028 -0.123945 0.207384 0.073715 -0.076856 0.947886 0.879128 1.025435 1.031517 1.389861 1.386598 16.524200 16.539441 0.772866 35.665803 35.670408 0.233499 42.723023 42.718910 -0.208558 44.577475 44.585643 0.414187 29.087886 29.092225 0.219994 59.619339 59.622301 0.150189 66.631243 66.638800 0.383233 73.994609 73.984882 -0.493308 3 35 23.148026 -1.312936 4.633086 0.250000 1.000000 -0.411344 -0.115359 2.792724 -0.528142 -1.371159 2 3 4 5 6 0.693796 -0.292119 -0.330315 0.226678 0.037519 -0.039735 0.991891 0.901996 1.078326 1.071169 1.458830 1.462940 16.524200 16.539825 0.803591 34.481938 34.486673 0.243510 43.019175 43.021047 0.096238 43.077825 43.079854 0.104318 28.752453 28.756535 0.209907 57.429028 57.431570 0.130775 65.892443 65.901788 0.480621 72.035667 72.025301 -0.533131 1 29 23.151152 -1.312936 4.633086 0.250000 1.000000 -0.411099 -0.115957 2.788811 0.712379 -1.373815 2 3 4 5 6 0.693796 -0.292119 -0.330315 0.226678 0.037519 -0.039735 0.991891 0.901996 1.078326 1.071169 1.458830 1.462940 16.524200 16.539825 0.803591 34.481938 34.486673 0.243510 43.019175 43.021047 0.096238 43.077825 43.079854 0.104318 28.752453 28.756535 0.209907 57.429028 57.431570 0.130775 65.892443 65.901788 0.480621 72.035667 72.025301 -0.533131