********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.2; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 41 19.381185 -1.381679 5.219878 0.032492 1.000000 -0.113504 -0.147913 4.485451 -0.430201 -0.716452 2 3 4 5 6 0.327139 -0.501534 0.302032 0.199596 0.105008 -0.113849 0.751472 0.662782 0.875287 0.853007 1.224014 1.247813 16.524200 16.560067 0.979958 24.314761 24.327462 0.347015 26.146892 26.121486 -0.694137 41.801140 41.840678 1.080234 21.678258 21.694492 0.443556 43.118004 43.139526 0.588009 51.500405 51.503280 0.078546 53.840663 53.850824 0.277638 2 46 19.589394 -1.381679 5.219878 0.032492 1.000000 -0.104957 -0.148439 3.909125 0.666559 -0.718456 2 3 4 5 6 0.327139 -0.501534 0.302032 0.199596 0.105008 -0.113849 0.751472 0.662782 0.875287 0.853007 1.224014 1.247813 16.524200 16.560067 0.979958 24.314761 24.327462 0.347015 26.146892 26.121486 -0.694137 41.801140 41.840678 1.080234 21.678258 21.694492 0.443556 43.118004 43.139526 0.588009 51.500405 51.503280 0.078546 53.840663 53.850824 0.277638 2 71 18.666666 -1.256024 5.473047 0.051777 1.000000 -0.170675 -0.132045 3.620265 -0.668895 -0.886190 2 3 4 5 6 0.371439 -0.506049 0.304837 0.188206 0.124457 -0.129543 0.782119 0.713400 0.885902 0.877914 1.228261 1.234120 16.524200 16.553457 0.951631 25.086572 25.098123 0.375715 28.119275 28.101641 -0.573560 42.833871 42.856206 0.726478 24.209508 24.223482 0.454525 48.353092 48.372585 0.634037 55.866277 55.867819 0.050167 59.523981 59.529135 0.167627 0.051777 1.000000 -0.171431 -0.136486 4.311486 0.879642 -0.877112 2 26 19.281116 -1.174593 5.170513 0.076429 1.000000 -0.212749 -0.147825 4.064831 -0.778715 -1.512737 2 3 4 5 6 0.409416 -0.493307 0.248899 0.189806 0.115360 -0.117790 0.815292 0.707708 0.824522 0.874030 1.107348 1.233685 16.524200 16.551813 0.935267 25.528391 25.539574 0.378770 28.863474 28.846372 -0.579239 42.410128 42.431035 0.708137 24.229716 24.242211 0.423192 48.871779 48.890710 0.641190 54.564284 54.566610 0.078775 59.738358 59.743501 0.174173 2 14 19.924367 -1.174593 5.170513 0.076429 1.000000 -0.210806 -0.147290 4.100324 0.804345 -1.547459 2 3 4 5 6 0.409416 -0.493307 0.248899 0.189806 0.115360 -0.117790 0.815292 0.707708 0.824522 0.874030 1.107348 1.233685 16.524200 16.551813 0.935267 25.528391 25.539574 0.378770 28.863474 28.846372 -0.579239 42.410128 42.431035 0.708137 24.229716 24.242211 0.423192 48.871779 48.890710 0.641190 54.564284 54.566610 0.078775 59.738358 59.743501 0.174173 2 27 20.179507 -1.507009 5.024051 0.107240 1.000000 -0.207085 -0.141062 2.677706 -0.681966 -1.058021 2 3 4 5 6 0.488892 -0.447571 0.107226 0.205343 0.083503 -0.087763 0.863019 0.779859 0.960856 0.948510 1.318851 1.323920 16.524200 16.549231 0.983687 29.495014 29.508964 0.548197 34.836881 34.821052 -0.622050 41.718805 41.733738 0.586840 25.540425 25.549026 0.338013 54.782152 54.795946 0.542113 56.272012 56.275772 0.147766 65.768160 65.771286 0.122828 2 25 20.199415 -1.507009 5.024051 0.107240 1.000000 -0.205786 -0.141156 2.670606 0.909930 -1.061540 2 3 4 5 6 0.488892 -0.447571 0.107226 0.205343 0.083503 -0.087763 0.863019 0.779859 0.960856 0.948510 1.318851 1.323920 16.524200 16.549231 0.983687 29.495014 29.508964 0.548197 34.836881 34.821052 -0.622050 41.718805 41.733738 0.586840 25.540425 25.549026 0.338013 54.782152 54.795946 0.542113 56.272012 56.275772 0.147766 65.768160 65.771286 0.122828