********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.2. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.2; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.2; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. 2 53 7.483117 -1.324304 7.360852 0.001968 1.000000 -0.022157 -0.155030 199.851886 -0.700757 -0.749868 2 3 4 5 6 0.204185 -0.476526 0.309560 0.136996 0.233405 -0.226508 0.648570 0.620972 0.731478 0.748995 1.028638 1.018382 16.524200 16.583120 1.416884 29.833144 29.796059 -0.891816 36.211372 36.235390 0.577578 47.046401 47.056340 0.239031 24.516089 24.553975 0.911061 46.037035 46.080091 1.035412 61.181405 61.188392 0.168024 64.167719 64.208878 0.989782 3 42 7.532053 -1.324304 7.360852 0.001968 1.000000 -0.024483 -0.153085 260.041900 1.081224 -0.862676 2 3 4 5 6 0.204185 -0.476526 0.309560 0.136996 0.233405 -0.226508 0.648570 0.620972 0.731478 0.748995 1.028638 1.018382 16.524200 16.583120 1.416884 29.833144 29.796059 -0.891816 36.211372 36.235390 0.577578 47.046401 47.056340 0.239031 24.516089 24.553975 0.911061 46.037035 46.080091 1.035412 61.181405 61.188392 0.168024 64.167719 64.208878 0.989782 5 101 19.765062 -2.225266 4.463506 0.007919 1.000000 0.014712 -0.134219 68.522344 0.096118 -0.522140 2 3 4 5 6 0.272324 -0.479375 0.290415 0.211588 0.065554 -0.070841 0.691498 0.527986 0.833107 0.767806 1.182006 1.219816 16.524200 16.550352 0.508611 22.496792 22.487887 -0.173183 23.499784 23.501463 0.032653 34.755028 34.757869 0.055253 16.336826 16.350511 0.266141 34.067762 34.086761 0.369511 41.196840 41.218809 0.427274 42.593580 42.586622 -0.135321 5 100 19.846243 -2.225266 4.463506 0.007919 1.000000 0.013669 -0.132714 55.762573 0.103568 -0.523459 2 3 4 5 6 0.272324 -0.479375 0.290415 0.211588 0.065554 -0.070841 0.691498 0.527986 0.833107 0.767806 1.182006 1.219816 16.524200 16.550352 0.508611 22.496792 22.487887 -0.173183 23.499784 23.501463 0.032653 34.755028 34.757869 0.055253 16.336826 16.350511 0.266141 34.067762 34.086761 0.369511 41.196840 41.218809 0.427274 42.593580 42.586622 -0.135321 2 60 11.579718 -1.337537 5.523459 0.018006 1.000000 -0.040399 -0.203211 87.374245 -0.462039 -0.704959 2 3 4 5 6 0.263396 -0.500035 0.284423 0.185499 0.140428 -0.151488 0.715081 0.612832 0.829475 0.801471 1.163679 1.180260 16.524200 16.575336 1.190322 28.114749 28.085447 -0.682091 30.029200 30.038038 0.205710 42.021539 42.028873 0.170717 20.938175 20.963402 0.587216 41.006755 41.039170 0.754541 52.046673 52.049839 0.073711 53.071509 53.095682 0.562672 2 86 11.663224 -1.337537 5.523459 0.018006 1.000000 -0.041306 -0.202089 80.963746 0.778920 -0.734583 2 3 4 5 6 0.263396 -0.500035 0.284423 0.185499 0.140428 -0.151488 0.715081 0.612832 0.829475 0.801471 1.163679 1.180260 16.524200 16.575336 1.190322 28.114749 28.085447 -0.682091 30.029200 30.038038 0.205710 42.021539 42.028873 0.170717 20.938175 20.963402 0.587216 41.006755 41.039170 0.754541 52.046673 52.049839 0.073711 53.071509 53.095682 0.562672 2 61 7.554077 -1.626686 7.223779 0.000000 1.000000 0.022826 -0.146570 33.970681 -0.568348 -0.578014 2 3 4 5 6 0.181020 -0.446325 0.273583 0.139574 0.240234 -0.241886 0.612810 0.590507 0.719571 0.732148 1.026615 1.018190 16.524200 16.579036 1.147300 28.737133 28.711462 -0.537088 33.645940 33.665498 0.409203 44.778327 44.786295 0.166712 22.356822 22.393279 0.762777 43.013762 43.057073 0.906163 57.215302 57.226261 0.229305 60.500910 60.546029 0.943999 2 84 7.549727 -1.618475 7.246251 0.000000 1.000000 0.019762 -0.144460 36.583196 0.973440 -0.693452 2 3 4 5 6 0.181729 -0.445884 0.273501 0.140887 0.181168 -0.170553 0.613238 0.561163 0.695280 0.698126 0.984569 0.980177 16.524200 16.578591 1.146002 28.666399 28.639764 -0.561197 33.770293 33.790899 0.434164 44.827419 44.835283 0.165689 22.472331 22.508738 0.767095 43.152459 43.195530 0.907504 57.378758 57.389357 0.223311 60.721916 60.766723 0.944083