********* Eigenvalues for the 2+1 transverse lattice ********* Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 Use chi^2 fit with 13 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,4) ( 1,-32/2,4,4) ( 1,-32/2,2,5) ( 1,-34/2,2,4) ( 1,-44/2,2,5) ( 1,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); relative scale error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=3 and error 0.3; ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) L=1 and error 0.3; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 7 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; Roundness with calculated and derived values (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 1 58 13.357813 -1.171259 5.348969 0.032492 1.000000 0.465808 -0.515163 3.883695 1.481709 -1.795479 2 3 4 5 6 0.181658 -0.823307 0.935211 0.189051 -0.099728 0.249415 0.636446 0.678801 0.581863 0.471098 16.524200 16.616888 1.441010 19.649996 19.695328 0.704776 36.752234 36.773517 0.330878 40.576993 40.593936 0.263424 15.875778 15.904774 0.450797 35.693112 35.736358 0.672329 47.464048 47.482209 0.282346 49.192815 49.187183 -0.087572 2 59 9.937843 -1.148196 5.455641 0.051777 1.000000 -0.177174 -0.145770 5.360845 -0.803146 -1.497633 2 3 4 5 6 0.357951 -0.499984 0.290085 0.195536 0.007879 0.079684 0.856033 0.892719 0.734596 0.698741 16.524200 16.555080 0.964875 27.157211 27.134096 -0.722231 27.234486 27.247257 0.399042 45.459700 45.486528 0.838262 23.947151 23.962845 0.490358 46.988294 47.009493 0.662361 55.426051 55.427122 0.033452 58.386449 58.394531 0.252529 2 59 19.024605 -1.204728 5.018367 0.076429 1.000000 -0.209065 -0.146316 4.179169 -0.748489 -1.680537 2 3 4 5 6 0.410280 -0.473481 0.202232 0.206273 0.004609 0.063325 0.871727 0.925967 0.759903 0.717812 16.524200 16.550642 0.871071 25.042286 25.053630 0.373695 28.399554 28.382307 -0.568183 41.549651 41.569869 0.666049 23.557189 23.569059 0.391039 47.737989 47.756142 0.598010 53.020303 53.022599 0.075633 58.252012 58.256813 0.158152 2 93 20.556160 -1.428060 4.331332 0.107240 1.000000 -0.216689 -0.145193 3.833943 0.351517 -1.729322 2 3 4 5 6 0.480965 -0.432383 0.071434 0.234201 -0.018220 0.047290 0.924633 0.987189 0.803814 0.738183 16.524200 16.544897 0.689863 25.165725 25.176537 0.360368 29.355811 29.341825 -0.466165 37.495702 37.510241 0.484582 21.939518 21.947306 0.259599 46.843163 46.857478 0.477123 48.106576 48.108067 0.049694 56.095433 56.098293 0.095313