********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 22 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. Includes a fit to 4*2 eigenvalues from Teper. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 5 100 53.45714581 -0.987506431 4.520164126 0.1921681542 1 -0.3817108558 -0.2171905086 13.21945615 0.2992355128 -1.200533575 2 3 4 5 6 0.547791 -0.382532 -0.115692 0.231744 0.027966 -0.031889 0.930708 0.793735 1.026377 0.988189 1.400566 1.416842 19.723516 19.746162 0.897213 31.133255 31.139666 0.253975 32.856294 32.837719 -0.735897 50.688370 50.722052 1.334389 25.414079 25.423449 0.371215 52.570727 52.578821 0.320693 53.325684 53.340215 0.575686 61.850229 61.827796 -0.888744 19.723516 32.856294 31.133255 51.744478 63.491675 75.546935 92.940977 93.902765 25.414079 52.570727 53.325684 61.850229 50.688370 69.333249 76.805617 77.021888 2 52 33.21232595 -0.7356022235 4.787321198 0.25 1 -0.5114755096 -0.2426101219 14.37380709 -0.7090396681 -1.479750438 2 3 4 5 6 0.577969 -0.372444 -0.192526 0.220447 0.044588 -0.043285 0.965393 0.835016 1.032891 1.008154 1.396535 1.400907 15.969306 15.992430 1.023744 33.288649 33.295851 0.318836 34.008309 33.989424 -0.836058 53.610392 53.630064 0.870883 28.185093 28.195500 0.460746 57.042128 57.062583 0.905565 57.102933 57.110012 0.313390 65.274392 65.246615 -1.229708 15.969306 34.008309 33.288649 53.610392 68.636550 81.551143 98.862285 100.443346 28.185093 57.102933 57.042128 65.274392 53.671116 72.861760 81.525757 82.875931 2 14 38.62675026 -0.7356022235 4.787321198 0.25 1 -0.5008957501 -0.2500561369 16.16117249 0.6678748635 -1.394981832 2 3 4 5 6 0.577969 -0.372444 -0.192526 0.220447 0.044588 -0.043285 0.965393 0.835016 1.032891 1.008154 1.396535 1.400907 15.969306 15.992430 1.023744 33.288649 33.295851 0.318836 34.008309 33.989424 -0.836058 53.610392 53.630064 0.870883 28.185093 28.195500 0.460746 57.042128 57.062583 0.905565 57.102933 57.110012 0.313390 65.274392 65.246615 -1.229708 15.969306 34.008309 33.288649 53.610392 68.636550 81.551143 98.862285 100.443346 28.185093 57.102933 57.042128 65.274392 53.671116 72.861760 81.525757 82.875931