********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 22 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. Includes a fit to 2 eigenvalues from Teper. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,19/2,5) ( 3,19/2,7) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,18/2,6) ( 4,18/2,8) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-32/2,2,3) ( 1,-32/2,4,3) ( 1,-32/2,2,4.5) ( 1,-44/2,2,3) ( 1,-44/2,2,4.5) ( 1,-60/2,2,3) ( 1,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=0 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=2.5 and error 0.1; ( 1,-19/2,3,3) ( 1,-19/2,5,3) ( 1,-19/2,3,4.5) ( 1,-33/2,3,3) ( 1,-33/2,3,4.5) ( 1,-49/2,3,3) ( 1,-49/2,3,4.5) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 1 49 31.17492321 -0.7672746393 5.535725823 0.1453085056 1 -0.3620802522 -0.1992188397 3942.785185 -1.060259325 -1.376474632 2 3 4 5 6 0.464083 -0.502489 0.202495 0.188164 0.099719 -0.092219 0.876349 0.784857 0.930704 0.930692 1.263399 1.263409 16.367842 16.392301 1.005400 31.542988 31.522233 -0.853109 37.386653 37.394481 0.321751 52.638863 52.641187 0.095529 28.528830 28.543285 0.594147 55.925827 55.956819 1.273894 61.018927 61.015398 -0.145087 66.521043 66.496230 -1.019936 16.367842 31.542988 37.386653 58.118920 68.309664 82.917152 101.725664 102.944506 28.528830 55.925827 61.018927 66.521043 52.638863 75.305433 76.772442 82.094690 1 49 31.25670875 -0.7672746393 5.535725823 0.1453085056 1 -0.3620806495 -0.199225884 2996.552579 1.274248889 -1.382997434 2 3 4 5 6 0.464083 -0.502489 0.202495 0.188164 0.099719 -0.092219 0.876349 0.784857 0.930704 0.930692 1.263399 1.263409 16.367842 16.392301 1.005400 31.542988 31.522233 -0.853109 37.386653 37.394481 0.321751 52.638863 52.641187 0.095529 28.528830 28.543285 0.594147 55.925827 55.956819 1.273894 61.018927 61.015398 -0.145087 66.521043 66.496230 -1.019936 16.367842 31.542988 37.386653 58.118920 68.309664 82.917152 101.725664 102.944506 28.528830 55.925827 61.018927 66.521043 52.638863 75.305433 76.772442 82.094690 2 61 34.368597 -0.8217757586 5.046696393 0.1921681542 1 -0.4191706394 -0.2100749392 12.18041044 -0.8656826658 -1.375507965 2 3 4 5 6 0.529750 -0.419202 -0.023696 0.207950 0.067733 -0.065639 0.922091 0.813702 0.990209 0.976929 1.343972 1.347319 17.286471 17.308677 0.949878 33.417700 33.399790 -0.766139 33.568349 33.575696 0.314241 53.342720 53.366912 1.034854 27.955162 27.966238 0.473780 57.168956 57.178283 0.398978 57.578375 57.594785 0.701952 65.570464 65.546419 -1.028562 17.286471 33.417700 33.568349 54.689444 68.159226 81.607384 100.454585 101.369981 27.955162 57.578375 57.168956 65.570464 53.342720 73.794495 80.869791 80.914992 2 7 71.52395817 -0.8217757586 5.046696393 0.1921681542 1 -0.4302997803 -0.1602216036 16.70153569 2.034154234 -1.914967656 2 3 4 5 6 0.529750 -0.419202 -0.023696 0.207950 0.067733 -0.065639 0.922091 0.813702 0.990209 0.976929 1.343972 1.347319 17.286471 17.308677 0.949878 33.417700 33.399790 -0.766139 33.568349 33.575696 0.314241 53.342720 53.366912 1.034854 27.955162 27.966238 0.473780 57.168956 57.178283 0.398978 57.578375 57.594785 0.701952 65.570464 65.546419 -1.028562 17.286471 33.417700 33.568349 54.689444 68.159226 81.607384 100.454585 101.369981 27.955162 57.578375 57.168956 65.570464 53.342720 73.794495 80.869791 80.914992 5 101 64.47812918 -1.411024749 4.131627961 0.25 1 -0.3652185139 -0.1797844676 3.124025944 0.4384974612 -1.472275693 2 3 4 5 6 0.686483 -0.304378 -0.336024 0.232287 0.027493 -0.031579 0.997088 0.813439 1.070392 1.004689 1.442933 1.429841 16.382688 16.403871 0.961312 33.244623 33.254658 0.455365 39.499987 39.510572 0.480388 39.792990 39.782328 -0.483853 25.772242 25.777221 0.225965 51.472115 51.475351 0.146840 59.475935 59.486564 0.482324 66.774295 66.761977 -0.558994 16.382688 33.244623 39.499987 39.792990 68.533128 79.670567 96.596900 97.592638 25.772242 51.472115 59.475935 66.774295 57.088283 74.191445 81.933621 86.546606 3 54 55.2080633 -1.28361469 4.226251962 0.25 1 -0.3955052354 -0.1866083678 3.366299863 0.06794370974 -1.521628339 2 3 4 5 6 0.670461 -0.295475 -0.351943 0.234888 0.022374 -0.024925 0.992203 0.828009 1.057439 1.019299 1.423749 1.446567 16.524327 16.546533 1.006751 31.860452 31.870539 0.457315 39.005470 38.987161 -0.830089 40.161892 40.180720 0.853631 26.153730 26.159251 0.250286 52.343456 52.346950 0.158406 59.217737 59.229864 0.549760 66.454770 66.440727 -0.636645 16.524327 31.860452 39.005470 40.161892 68.583205 79.959296 97.118176 97.783802 26.153730 52.343456 59.217737 66.454770 56.600375 73.894206 82.147116 86.620220