******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale determined by best chi^2 fit. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-32/2,2,4) ( 0,-32/2,4,4) ( 0,-32/2,2,5) ( 0,-34/2,2,4) ( 0,-44/2,2,5) ( 0,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); with relative error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) , L=3 and error 0.3 (all in G^2 N units). p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=3 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 24 13.272528 -1.000000 6.113667 0.000000 1.000000 -0.024274 -0.108900 5.906372 -0.611822 2 3 4 5 0.192499 -0.445397 0.304949 0.217495 -0.225011 0.122708 0.610156 0.680745 12.949469 12.987858 0.722871 21.434564 21.411075 -0.442294 25.590083 25.607342 0.324978 36.457465 36.461945 0.084358 19.514362 19.541791 0.516483 36.366001 36.396224 0.569103 47.977014 47.979056 0.038444 52.023024 52.081540 1.101844 5 103 12.799641 -1.506030 6.214278 0.001968 1.000000 -0.048170 -0.132970 20.505335 -0.025509 2 3 4 5 0.208749 -0.477067 0.339708 0.226098 -0.031996 0.076747 0.965084 0.920491 13.140282 13.184178 0.911086 23.200125 23.169253 -0.640766 29.785004 29.805302 0.421303 38.687762 38.694267 0.135015 20.945720 20.975841 0.625186 38.627335 38.659707 0.671893 51.159285 51.162838 0.073734 54.392733 54.421827 0.603858 2 66 12.302169 -1.000000 5.913600 0.007919 1.000000 -0.072665 -0.164886 26.788387 -0.172993 2 3 4 5 0.221239 -0.519098 0.392153 0.230315 -0.059219 0.100382 0.947906 0.907555 11.777125 11.827261 1.049497 23.439283 23.403687 -0.745135 29.689409 29.708338 0.396247 38.134270 38.142212 0.166249 20.900039 20.931694 0.662640 37.972291 38.005976 0.705116 50.703786 50.706922 0.065649 53.296584 53.322242 0.537108 2 8 10.715512 -0.867975 5.733561 0.018006 1.000000 -0.118525 -0.170902 25.100000 -0.127924 2 3 4 5 0.247663 -0.560612 0.459708 0.233551 -0.052301 0.092798 1.000145 0.937071 10.968568 11.015774 1.072524 22.709454 22.672921 -0.830020 29.916247 29.933376 0.389169 38.084637 38.121253 0.831919 21.532278 21.561538 0.664789 38.660872 38.691741 0.701359 51.294509 51.297576 0.069667 53.368832 53.381624 0.290632 2 52 12.310117 -1.000000 5.307234 0.032492 1.000000 -0.077407 -0.229185 150.092574 -0.404827 2 3 4 5 0.285730 -0.503829 0.264990 0.236908 -0.096626 0.104284 0.949163 0.906808 16.152919 16.206602 1.302513 28.528912 28.492240 -0.889758 30.183727 30.195465 0.284806 42.292115 42.299355 0.175648 21.331669 21.356124 0.593354 41.481118 41.513077 0.775411 51.699976 51.707927 0.192906 53.595429 53.609730 0.346982 2 43 12.177090 -0.958435 4.936214 0.051777 1.000000 -0.116740 -0.274969 2156.618297 -0.629682 2 3 4 5 0.299530 -0.532274 0.273502 0.238643 -0.140803 0.089534 0.884147 0.844806 14.128351 14.187088 1.389538 27.916854 27.865607 -1.212332 29.179406 29.200791 0.505894 40.529849 40.537912 0.190747 20.796770 20.821635 0.588230 39.708145 39.740627 0.768405 49.437021 49.446010 0.212659 51.748041 51.754924 0.162830 2 53 14.879018 -1.000000 5.463597 0.076429 1.000000 -0.159021 -0.145373 2043.857962 -1.797466 2 3 4 5 0.431497 -0.455493 0.148564 0.240655 -0.628908 -0.013953 0.279622 0.493815 26.572696 26.598517 0.973978 34.721968 34.691110 -1.163949 35.177885 35.195967 0.682061 54.083480 54.085022 0.058168 26.031154 26.042416 0.424819 55.207517 55.226495 0.715885 58.502818 58.505495 0.100977 66.590255 66.595120 0.183544 2 33 26.276870 -0.275712 4.243828 0.107240 1.000000 0.027378 -0.139054 79.055798 -4.224160 2 3 4 5 0.532510 -0.458193 0.103119 0.244589 -2.867541 -0.073178 -1.777187 -1.829926 27.975118 27.984654 0.344807 34.625781 34.637803 0.434692 38.425142 38.411803 -0.482297 53.291829 53.292348 0.018762 21.884117 21.889290 0.187040 47.445442 47.450092 0.168153 53.053616 53.059351 0.207348 61.455544 61.457895 0.085036 2 16 23.985155 -0.599708 4.365405 0.145309 1.000000 -0.128820 -0.132914 12.336130 -1.987108 2 3 4 5 0.588047 -0.423847 0.000957 0.248893 -0.640118 0.168678 0.444831 0.516213 27.402437 27.412616 0.418059 35.771899 35.783671 0.483512 39.335972 39.322389 -0.557868 51.714787 51.723258 0.347955 24.168147 24.173084 0.202772 50.787257 50.791114 0.158429 57.417018 57.423768 0.277257 66.215630 66.217646 0.082798 2 26 22.785849 -0.250000 4.051149 0.192168 1.000000 -0.084420 -0.139649 0.002666 -3.243330 2 3 4 5 0.674901 -0.418886 -0.056540 0.239754 -1.475756 0.091627 -0.385796 -0.381047 8.348595 8.369454 0.912530 35.758494 35.766546 0.352212 39.998901 40.011323 0.543431 43.260468 43.247669 -0.559883 24.162540 24.166216 0.160820 49.373136 49.375867 0.119467 59.980924 59.986267 0.233705 68.440358 68.441723 0.059696 2 27 20.155927 -2.160028 4.210898 0.250000 1.000000 -0.168694 -0.112937 7.011147 -3.750666 2 3 4 5 0.766124 -0.386418 -0.159788 0.285780 -1.730619 0.572220 -0.447667 -0.252089 26.524498 26.532937 0.435601 45.456573 45.464912 0.430437 48.502467 48.502647 0.009276 48.518679 48.517861 -0.042222 27.079239 27.082004 0.142714 53.682529 53.684500 0.101736 68.229610 68.233866 0.219648 76.881966 76.903468 1.109901