******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale determined by best chi^2 fit. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = ( 0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.5 2 0.5 0.5) (4, 1 & -1, 2 & 1, 0.5 0.5 0.5 0.5). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-32/2,2,4) ( 0,-32/2,4,4) ( 0,-32/2,2,5) ( 0,-34/2,2,4) ( 0,-44/2,2,5) ( 0,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); with relative error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) , L=3 and error 0.3 (all in G^2 N units). p-extrapolation using (n,K,p) = ( 1,19/2,3) ( 1,25/2,3) ( 1,39/2,3) ( 1,19/2,5) ( 1,25/2,5) ( 1,23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=3 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 55 8.046564 -0.363419 6.703957 0.000000 1.000000 -0.076970 -0.136162 1.786883 -0.449107 2 3 4 5 0.134229 -0.753858 0.941411 0.198449 -0.101522 0.017329 0.659434 0.672375 -0.044990 0.018866 0.919387 15.509801 15.467803 -0.604681 14.771412 14.816525 0.649538 17.754212 17.794593 0.581401 19.396234 19.458698 0.899349 29.109665 29.148567 0.560101 44.324003 44.327393 0.048806 45.213699 45.282360 0.988568 2 23 18.939042 -0.360934 5.620797 0.001968 1.000000 -0.124191 -0.112088 5.625577 0.229447 2 3 4 5 0.177072 -0.794548 1.032014 0.224108 -0.010517 0.002310 1.036844 0.846236 -0.096485 -0.063282 0.528746 10.779516 10.750967 -0.454624 19.144644 19.175952 0.498564 20.448787 20.464699 0.253393 17.992024 18.031557 0.629544 26.822979 26.847639 0.392689 39.167524 39.163210 -0.068708 42.547033 42.528151 -0.300697 2 182 7.072724 -0.488639 5.820936 0.007919 1.000000 -0.036279 -0.269036 171.052344 -0.908995 2 3 4 5 0.147039 -0.758138 0.802168 0.228566 -0.394412 0.064941 0.465469 0.477624 3.384885 3.475582 1.242047 23.069388 23.037736 -0.433458 27.481189 27.531066 0.683042 26.576478 26.612939 0.499306 18.308196 18.366435 0.797541 30.388013 30.438584 0.692553 45.165267 45.182825 0.240454 49.784392 49.837983 0.733898 2 64 17.526695 -1.168033 5.337463 0.018006 1.000000 -0.126321 -0.117837 3.500359 -0.328865 2 3 4 5 0.283392 -0.517277 0.392453 0.234115 -0.093650 0.110685 0.921486 0.900500 12.043384 12.073285 0.723647 21.113100 21.068869 -1.070451 21.393656 21.431554 0.917191 37.539480 37.542778 0.079805 20.717699 20.736156 0.446691 38.810212 38.831173 0.507268 49.492545 49.493661 0.027009 50.297510 50.293361 -0.100412 1 89 12.147241 -1.079107 5.221990 0.032492 1.000000 -0.077209 -0.250795 221.029589 -0.960551 2 3 4 5 0.269926 -0.523098 0.293617 0.235669 -0.278494 0.054850 0.643530 0.688308 14.216579 14.275771 1.334961 27.780301 27.741410 -0.877099 29.525307 29.537723 0.280015 40.518442 40.527363 0.201194 20.681119 20.708406 0.615395 39.448796 39.483130 0.774335 50.533125 50.538162 0.113600 51.771596 51.790151 0.418460 2 13 13.686480 -1.183568 5.435751 0.051777 1.000000 -0.160642 -0.175395 7.379155 -1.171216 2 3 4 5 0.347315 -0.497200 0.265392 0.237370 -0.336707 0.023304 0.585757 0.710389 17.266820 17.306129 1.187379 28.233548 28.202983 -0.923268 28.968509 28.980550 0.363714 45.670685 45.674286 0.108764 23.731617 23.749575 0.542468 46.563573 46.587793 0.731603 55.183222 55.186969 0.113203 58.328430 58.338301 0.298154 2 39 10.835458 -1.145507 5.098636 0.076429 1.000000 -0.199297 -0.204872 6.457516 -0.942923 2 3 4 5 0.386013 -0.482811 0.196286 0.239776 -0.236981 0.061431 0.759381 0.823215 17.304756 17.343607 1.223412 29.028828 28.999639 -0.919160 27.806341 27.817513 0.351816 45.679796 45.711716 1.005167 23.647158 23.662969 0.497897 47.068651 47.091727 0.726661 53.590827 53.595735 0.154566 58.424703 58.429378 0.147200 2 18 12.638886 -1.446497 4.613847 0.107240 1.000000 -0.178291 -0.213307 9.400746 -0.826222 2 3 4 5 0.459157 -0.430679 0.029167 0.243327 -0.165589 0.105034 0.943691 0.912972 22.325543 22.358713 1.124348 33.023561 32.996561 -0.915171 29.189321 29.198659 0.316544 48.909429 48.944414 1.185825 23.208426 23.219698 0.382083 49.438387 49.458635 0.686322 51.068439 51.072327 0.131792 59.902097 59.901043 -0.035719 2 72 20.946896 -1.771979 4.528017 0.145309 1.000000 -0.203166 -0.139667 3.496332 -1.054366 2 3 4 5 0.567100 -0.405581 -0.032258 0.246820 -0.225622 0.139246 0.929006 0.926023 18.857253 18.876079 0.773472 32.900721 32.912435 0.481288 37.484793 37.471714 -0.537372 41.186959 41.199466 0.513862 24.840524 24.846413 0.241954 52.275264 52.279889 0.190021 56.983453 56.991819 0.343691 66.150480 66.152778 0.094404 2 47 21.835393 -2.213818 4.320579 0.192168 1.000000 -0.164193 -0.125382 2.068653 -1.220536 2 3 4 5 0.666960 -0.399841 -0.088683 0.250716 -0.265010 0.184284 0.963782 0.935962 15.885472 15.902689 0.793820 40.070340 40.078764 0.388395 39.605640 39.616863 0.517470 43.444761 43.433735 -0.508375 25.701541 25.705416 0.178654 52.496170 52.498986 0.129809 62.513046 62.518862 0.268156 71.390153 71.391618 0.067568 2 69 22.633066 -2.257241 4.169079 0.250000 1.000000 -0.173124 -0.128447 2.309695 -1.409053 2 3 4 5 0.760319 -0.383397 -0.171753 0.254705 -0.320504 0.233915 0.972558 0.929628 17.353168 17.368803 0.792975 44.647060 44.656971 0.502644 41.018876 41.026899 0.406944 48.138778 48.128645 -0.513950 26.777753 26.780806 0.154818 53.107680 53.109862 0.110652 67.206366 67.211270 0.248722 76.026635 76.028181 0.078429