******* Eigenvalues for the 2+1 transverse lattice ******* Couplings: m^2, G^2 N, la_1/a, la_2/a, la_3/a, tau 0 1 2 3 4 5 Use chi^2 fit with 12 criteria, and tolerance 0.001. Overall scale determined by best chi^2 fit. 2 parity doublets with fractional errors 2 0.5. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.25 2 1 1) (4, 1 & -1, 2 & 1, 0.25 1 1 1). Spectra extrapolated using (K,p) = (18/2,6) (18/2,8) (20/2,6) (20/2,8) (24/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,28/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,23/2,5) ( 3,27/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,22/2,6) ( 4,26/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 0,-32/2,2,4) ( 0,-32/2,4,4) ( 0,-32/2,2,5) ( 0,-34/2,2,4) ( 0,-44/2,2,5) ( 0,-60/2,2,4) , L = 3 4 6 (all in G^2 N units); with relative error 0.25. Roundness determined using (n,K,p,K_max) = ( 1,-19/2,3,4) ( 1,-19/2,5,4) ( 1,-19/2,3,5) ( 1,-33/2,3,4) ( 1,-33/2,3,5) ( 1,-49/2,3,4) , L=3 and error 0.3 (all in G^2 N units). p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: fit info, # steps, chi^2, p damping, and scale g^2 N/(a sigma); the 6 couplings (G^2 N units) and which--if any--were fit; winding and longitudinal string tension fits; n=1 L=3 eigenvalue and derived value (G^2 N units); the rescaled spectrum for each P_perp*a and c^2 values. 2 39 12.244895 -1.000000 6.543143 0.000000 1.000000 -0.025262 -0.109585 824.286067 1.439348 2 3 4 5 0.191622 -0.446274 0.307048 0.235253 -0.423117 0.082959 0.914586 0.572656 13.968296 14.007371 0.783868 22.875404 22.847946 -0.550828 30.767419 30.792015 0.493432 38.876784 38.877646 0.017278 20.866488 20.896203 0.596102 38.783340 38.815889 0.652981 51.245764 51.248121 0.047303 55.690751 55.750814 1.204923 2 29 7.133353 -1.682905 6.010108 0.001968 1.000000 0.004942 -0.181239 38.162431 -0.169113 2 3 4 5 0.192986 -0.473248 0.303957 0.226626 -0.056989 0.100951 0.911706 0.873951 13.530337 13.585827 1.029761 25.765975 25.740460 -0.473501 29.316328 29.329736 0.248827 38.889381 38.898064 0.161135 19.634423 19.667944 0.622078 37.285104 37.324224 0.725980 49.957070 49.965017 0.147476 52.071867 52.110681 0.720297 2 43 8.114990 -1.129484 6.058558 0.007919 1.000000 -0.093245 -0.141321 11.292347 -0.245631 2 3 4 5 0.229483 -0.525783 0.423681 0.230251 -0.073518 0.107715 0.917346 0.913388 11.513450 11.557149 0.972092 22.202931 22.169752 -0.738076 29.486856 29.505339 0.411158 38.362163 38.368297 0.136446 21.625997 21.655728 0.661372 38.899980 38.930324 0.675030 51.587077 51.589190 0.047006 54.635218 54.639560 0.096590 2 8 8.775837 -1.077092 5.841299 0.018006 1.000000 -0.112280 -0.148656 7836.109452 -1.639214 2 3 4 5 0.267972 -0.520516 0.382434 0.237935 -0.833426 -0.026301 0.001215 0.173885 14.107657 14.146967 0.984512 24.127817 24.096384 -0.787241 31.558474 31.574867 0.410567 40.934361 40.939515 0.129059 22.383963 22.408398 0.611982 41.626978 41.654629 0.692504 53.893026 53.886983 -0.151346 54.931032 54.951243 0.506168 2 8 15.055652 -0.944408 6.021529 0.032492 1.000000 -0.185782 -0.120491 3217.968086 -1.945398 2 3 4 5 0.306950 -0.567121 0.487775 0.244007 -1.042752 -0.106970 -0.213241 0.028169 12.161312 12.184756 0.693298 22.729101 22.709384 -0.583086 33.601523 33.615781 0.421641 42.386402 42.389349 0.087155 24.501330 24.521788 0.605003 44.614719 44.637538 0.674827 57.021841 57.028441 0.195178 57.532377 57.496587 -1.058417 2 57 7.493214 -1.000000 4.934575 0.051777 1.000000 -0.176678 -0.230842 1409.115588 -1.061047 2 3 4 5 0.299261 -0.581207 0.417384 0.235671 -0.285161 -0.002403 0.619873 0.665346 10.947734 10.995996 1.140303 23.372449 23.333682 -0.915952 28.849211 28.862070 0.303815 37.595386 37.601943 0.154913 20.731664 20.756046 0.576077 37.893276 37.921889 0.676067 49.118137 49.110775 -0.173966 49.635555 49.657245 0.512499 2 33 6.706125 -1.000000 5.088319 0.076429 1.000000 -0.262907 -0.212573 6.334422 -1.150942 2 3 4 5 0.336511 -0.629018 0.511551 0.234595 -0.270589 -0.054341 0.619352 0.703823 7.937009 7.977291 1.103556 21.972285 21.940508 -0.870581 25.989726 26.004046 0.392303 38.793666 38.828729 0.960576 22.560150 22.582387 0.609218 40.309666 40.335780 0.715428 51.803977 51.791608 -0.338880 52.379756 52.397909 0.497333 2 34 6.896752 -1.000000 4.990338 0.107240 1.000000 -0.339053 -0.248683 34.805616 -1.278799 2 3 4 5 0.349288 -0.733293 0.660375 0.231440 -0.260289 -0.131151 0.591607 0.682195 4.341315 4.380125 1.082366 20.149928 20.116219 -0.940127 30.284731 30.294897 0.283513 37.396616 37.401784 0.144136 22.840984 22.865115 0.672983 39.189259 39.216689 0.764993 51.488089 51.469130 -0.528748 51.759956 51.792000 0.893655 2 91 11.839121 -1.000000 3.623133 0.145309 1.000000 -0.305163 -0.416364 149.200122 -1.348958 2 3 4 5 0.353405 -0.687729 0.382889 0.234568 -0.274620 -0.073973 0.636978 0.571639 6.656921 6.716154 1.213487 21.588907 21.529191 -1.223400 23.929368 23.950608 0.435138 31.801302 31.809218 0.162176 17.585742 17.607160 0.438790 31.485889 31.514161 0.579220 39.233805 39.240209 0.131195 41.933267 41.905898 -0.560708 1 77 12.036937 -1.000000 5.072589 0.192168 1.000000 0.042252 -0.315291 8.838376 -0.340992 2 3 4 5 0.626517 -0.421106 -0.124901 0.243859 -0.048957 0.063929 1.242367 1.186040 32.032067 32.052058 1.016537 48.969675 49.003250 1.707244 57.624095 57.618896 -0.264354 59.747870 59.740923 -0.353220 29.649024 29.657813 0.446914 61.206277 61.212858 0.334680 73.155972 73.171375 0.783240 85.124884 85.116384 -0.432201