********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from fitting lowest state to lattice value. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,34/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,25/2,5) ( 3,35/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,24/2,6) ( 4,34/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-40/2,2,4) ( 1,-40/2,4,4) ( 1,-40/2,2,3.5) ( 1,-50/2,2,3.75) ( 1,-50/2,2,4.25) ( 1,-70/2,2,4) ( 1,-70/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=0 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=2.5 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 3 79 15.75843486 -0.7737100304 5.574004866 0.1453085056 1 -0.3617587894 -0.1972666616 3852.154422 -1.105785389 -1.421998508 2 3 4 5 6 0.464625 -0.475019 0.118780 0.188326 0.090637 -0.081424 0.880628 0.784738 0.930756 0.929269 1.259439 1.260317 16.524200 16.548423 1.003718 31.813859 31.793283 -0.852617 37.634518 37.642286 0.321883 53.024739 53.027062 0.096260 28.733076 28.747416 0.594232 56.291567 56.321557 1.242738 61.428382 61.425642 -0.113536 66.986073 66.961133 -1.033462 16.524200 31.813859 37.634518 58.406044 68.803032 83.484257 102.244134 103.297372 28.733076 56.291567 61.428382 66.986073 53.024739 75.706051 77.217561 82.353405 1 39 15.91646958 -0.7737100304 5.574004866 0.1453085056 1 -0.3615279472 -0.197534793 4765.560566 1.327145906 -1.439827774 2 3 4 5 6 0.464625 -0.475019 0.118780 0.188326 0.090637 -0.081424 0.880628 0.784738 0.930756 0.929269 1.259439 1.260317 16.524200 16.548423 1.003718 31.813859 31.793283 -0.852617 37.634518 37.642286 0.321883 53.024739 53.027062 0.096260 28.733076 28.747416 0.594232 56.291567 56.321557 1.242738 61.428382 61.425642 -0.113536 66.986073 66.961133 -1.033462 16.524200 31.813859 37.634518 58.406044 68.803032 83.484257 102.244134 103.297372 28.733076 56.291567 61.428382 66.986073 53.024739 75.706051 77.217561 82.353405 2 40 28.80204336 -0.787267923 4.943818432 0.1921681542 1 -0.4234107898 -0.217082125 24.12743121 -0.7494070055 -1.360576748 2 3 4 5 6 0.524957 -0.424866 -0.044819 0.214489 0.053300 -0.052378 0.924397 0.806973 0.997695 0.978225 1.352787 1.364031 16.524200 16.546100 0.909383 31.294242 31.293652 -0.024476 34.967954 34.956354 -0.481684 51.602385 51.604172 0.074181 27.283185 27.294503 0.469993 55.609038 55.613993 0.205745 55.897899 55.918951 0.874182 63.727049 63.701923 -1.043341 16.524200 31.294242 34.967954 55.755055 66.192934 79.421504 97.579470 98.444182 27.283185 55.897899 55.609038 63.727049 51.602385 71.602448 78.046515 78.220387 2 7 80.93423921 -0.787267923 4.943818432 0.1921681542 1 -0.4302997803 -0.1602216036 50 2.034154234 -1.914967656 2 3 4 5 6 0.524957 -0.424866 -0.044819 0.214489 0.053300 -0.052378 0.924397 0.806973 0.997695 0.978225 1.352787 1.364031 16.524200 16.546100 0.909383 31.294242 31.293652 -0.024476 34.967954 34.956354 -0.481684 51.602385 51.604172 0.074181 27.283185 27.294503 0.469993 55.609038 55.613993 0.205745 55.897899 55.918951 0.874182 63.727049 63.701923 -1.043341 16.524200 31.294242 34.967954 55.755055 66.192934 79.421504 97.579470 98.444182 27.283185 55.897899 55.609038 63.727049 51.602385 71.602448 78.046515 78.220387 2 73 14.3933885 -7.263677677 22.70260985 0.25 1 0.01307421984 0.007134481757 -2.04170849 3.964286687 -2.725204359 2 3 4 5 6 0.808058 -0.388575 -0.140322 0.039809 0.277140 -0.293726 1.025231 1.075153 0.930244 1.081333 1.186937 1.099594 16.524200 16.527643 1.010615 207.659675 207.676025 4.799179 285.048260 285.046185 -0.609140 285.165255 285.166942 0.495121 146.822079 146.825260 0.933770 290.846822 290.848907 0.611772 388.324498 388.325280 0.229791 433.487909 433.489772 0.546701 16.524200 285.048260 207.659675 285.165255 434.230148 494.915000 594.567468 605.631020 146.822079 290.846822 388.324498 433.487909 385.255065 486.340691 514.395497 549.519272 1 67 31.94321076 -7.263677677 22.70260985 0.25 1 -0.4089850132 -0.05444673811 1.217524469 2.310851381 -2.108328446 2 3 4 5 6 0.808058 -0.388575 -0.140322 0.039809 0.277140 -0.293726 1.025231 1.075153 0.930244 1.081333 1.186937 1.099594 16.524200 16.527643 1.010615 207.659675 207.676025 4.799179 285.048260 285.046185 -0.609140 285.165255 285.166942 0.495121 146.822079 146.825260 0.933770 290.846822 290.848907 0.611772 388.324498 388.325280 0.229791 433.487909 433.489772 0.546701 16.524200 285.048260 207.659675 285.165255 434.230148 494.915000 594.567468 605.631020 146.822079 290.846822 388.324498 433.487909 385.255065 486.340691 514.395497 549.519272