********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,34/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,25/2,5) ( 3,35/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,24/2,6) ( 4,34/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-40/2,2,4) ( 1,-40/2,4,4) ( 1,-40/2,2,3.5) ( 1,-50/2,2,3.75) ( 1,-50/2,2,4.25) ( 1,-70/2,2,4) ( 1,-70/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=0 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=2.5 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 46 8.325858404 -0.8902887089 6.488769654 0.0625 1 -0.2285961599 -0.1467998049 1450.518496 -1.135220771 -1.26481196 2 3 4 5 6 0.358613 -0.511499 0.310217 0.157993 0.147817 -0.131384 0.790127 0.727926 0.833048 0.849389 1.133698 1.127540 16.730731 16.758272 1.025383 29.581138 29.557926 -0.864222 38.962676 38.975216 0.466911 51.934285 51.937265 0.110938 28.833682 28.853104 0.723103 54.458057 54.483530 0.948400 65.987463 65.981135 -0.235612 68.309680 68.314361 0.174280 16.730731 29.581138 38.962676 56.109421 68.309680 84.655208 99.697386 111.766130 28.833682 54.458057 65.987463 68.892926 51.934285 71.411538 83.225572 87.762145 1 26 10.42272203 -0.592333783 6.153766281 0.09 1 -0.3032787178 -0.1748147515 4712.170652 -1.140681792 -1.362717144 2 3 4 5 6 0.370917 -0.609799 0.477798 0.168006 0.118230 -0.095900 0.813768 0.722300 0.850991 0.853833 1.154330 1.152703 9.904080 9.931327 0.995085 25.997692 25.974183 -0.858567 37.731100 37.742483 0.415736 48.033231 48.036686 0.126199 28.293726 28.314672 0.764952 50.927077 50.954873 1.015116 63.379592 63.365109 -0.528925 64.587719 64.575236 -0.455868 9.904080 25.997692 37.731100 48.982458 64.982183 80.768752 88.031497 101.852415 28.293726 50.927077 63.379592 64.587719 48.033231 65.698905 71.126432 88.710296 2 37 8.52311789 -0.4421933085 5.837450747 0.1225 1 -0.3711845869 -0.2015905316 546.4384415 -1.124026409 -1.451080118 2 3 4 5 6 0.393565 -0.710751 0.627048 0.179116 0.089896 -0.064081 0.842068 0.728341 0.876470 0.869659 1.185745 1.189659 5.324506 5.351116 0.978162 23.933439 23.910184 -0.854829 36.739305 36.749264 0.366088 45.654601 45.674961 0.748401 27.988739 28.009362 0.758080 49.050565 49.080199 1.089309 61.413593 61.400355 -0.486605 61.689097 61.674527 -0.535546 5.324506 23.933439 36.739305 45.654601 63.097867 78.450899 85.458783 98.168414 27.988739 49.050565 61.413593 61.689097 45.907508 64.653930 64.146348 74.733789 2 34 10.94888151 -0.3796124889 5.591995421 0.16 1 -0.4383723302 -0.2230772747 147.4570973 -1.192892929 -1.643612253 2 3 4 5 6 0.427594 -0.768733 0.679329 0.184094 0.070158 -0.040229 0.874178 0.732322 0.890553 0.876531 1.195045 1.204021 2.766210 2.791108 0.952515 23.482012 23.460270 -0.831810 36.318867 36.327288 0.322195 45.517041 45.537768 0.792942 28.170015 28.189001 0.726366 49.164842 49.196947 1.228238 60.435166 60.427088 -0.309021 60.451090 60.428341 -0.870332 2.766210 23.482012 36.318867 45.517041 63.028432 78.099926 88.082782 97.343020 28.170015 49.164842 60.435166 60.451090 45.640288 67.499908 61.436363 72.379986 2 33 16.64275753 -0.7862275025 6.778186335 0.2025 1 -0.454417308 -0.1731850841 5964.667405 -1.880616501 -1.989617105 2 3 4 5 6 0.553424 -0.403181 -0.076970 0.151857 0.114758 -0.093055 0.931717 0.862035 0.912786 0.952901 1.203459 1.180012 22.391021 22.407348 0.979881 44.345512 44.327159 -1.101518 48.583071 48.595396 0.739744 71.540562 71.542087 0.091535 37.950586 37.962922 0.740424 77.413824 77.429359 0.932389 77.826079 77.840959 0.893110 86.848951 86.821184 -1.666574 22.391021 44.345512 48.583071 78.368229 92.021899 110.122941 133.901660 136.403334 37.950586 77.826079 77.413824 86.848951 71.540562 97.983419 107.251800 108.497392 -2 7 43.4135314 -0.6599962362 4.229561016 0.25 1 -0.50272 -0.307886 50 -1.45567 -1.79297 2 3 4 5 6 0.553185 -0.448256 -0.107535 0.187429 0.073234 -0.059361 0.966580 0.643977 0.990132 0.811590 1.319973 1.170382 13.516802 13.546507 1.112021 29.166656 29.148763 -0.669829 31.191782 31.189140 -0.098904 46.325922 46.328361 0.091318 24.663032 24.674602 0.433133 48.883293 48.901709 0.689429 49.974225 49.984704 0.392291 57.517343 57.479834 -1.404180 13.516802 29.166656 31.191782 50.496819 59.540379 71.142359 86.307301 87.537013 24.663032 49.974225 48.883293 57.517343 46.325922 63.827900 70.662345 72.097573