********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,34/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,25/2,5) ( 3,35/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,24/2,6) ( 4,34/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-40/2,2,4) ( 1,-40/2,4,4) ( 1,-40/2,2,3.5) ( 1,-50/2,2,3.75) ( 1,-50/2,2,4.25) ( 1,-70/2,2,4) ( 1,-70/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=0 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=2.5 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 3 47 6.369872612 -1.710097193 7.578522352 0 1 -0.004693500257 -0.114567563 2738.711613 -0.6630839669 -0.6714368651 2 3 4 5 6 0.191087 -0.422064 0.253378 0.132402 0.235192 -0.224878 0.621288 0.605939 0.709826 0.730517 1.003683 0.991837 17.956540 18.001823 1.049223 28.275967 28.246208 -0.689542 35.851152 35.877232 0.604289 46.617879 46.625342 0.172928 24.087495 24.120067 0.754730 46.002772 46.040372 0.871213 60.272327 60.276033 0.085884 64.134569 64.169114 0.800426 17.956540 28.275967 35.851152 51.999544 60.272327 77.295100 91.782172 98.074476 24.087495 46.002772 64.134569 66.994053 46.617879 67.694651 75.316992 83.250334 1 53 7.349227765 -1.454957284 7.314588575 0.0025 1 -0.05543702533 -0.1081262544 1062.96234 -0.7481706764 -0.7871380194 2 3 4 5 6 0.225674 -0.449297 0.287104 0.137514 0.219964 -0.209276 0.660361 0.637571 0.739298 0.759729 1.034728 1.022897 17.785889 17.825676 1.050836 27.169455 27.138941 -0.805913 36.450549 36.473755 0.612900 47.002199 47.007609 0.142865 25.316896 25.345251 0.748889 47.613518 47.644962 0.830489 61.641914 61.639827 -0.055130 64.796446 64.813804 0.458461 17.785889 27.169455 36.450549 52.132068 61.641914 78.430141 92.271577 102.098391 25.316896 47.613518 64.796446 66.823859 47.002199 66.882649 76.751054 76.926475 2 43 8.135087732 -1.315172513 7.251136348 0.01 1 -0.09526007516 -0.1061584742 3527.743867 -0.886839406 -0.9286899822 2 3 4 5 6 0.262328 -0.469771 0.307501 0.138867 0.205737 -0.191172 0.695320 0.669999 0.760450 0.784735 1.054031 1.039964 18.756777 18.791116 1.045099 28.029280 28.001499 -0.845525 38.066859 38.086895 0.609806 49.588918 49.592895 0.121062 27.020287 27.044846 0.747439 51.002834 51.030515 0.842464 65.064881 65.056319 -0.260606 66.794897 66.801071 0.187886 18.756777 28.029280 38.066859 54.573381 65.064881 82.173756 97.701419 106.425450 27.020287 51.002834 66.794897 69.054148 49.588918 70.599356 79.572570 82.852506 3 67 8.339396601 -1.409207614 7.64254067 0.0225 1 -0.1213305738 -0.09585391155 4205.936202 -1.142357493 -1.133311771 2 3 4 5 6 0.313229 -0.464664 0.268646 0.131120 0.201963 -0.181753 0.732891 0.720308 0.774663 0.814886 1.060319 1.037097 24.170957 24.197983 1.035141 33.352044 33.330111 -0.840083 42.534163 42.551573 0.666823 58.174656 58.177133 0.094874 30.775919 30.795345 0.744057 60.338882 60.363153 0.929623 73.660164 73.650816 -0.358055 74.929454 74.933174 0.142490 24.170957 33.352044 42.534163 66.338217 74.929454 93.559979 114.181846 119.958127 30.775919 60.338882 73.660164 77.610039 58.174656 83.702795 89.865530 95.809009 2 47 8.133791511 -1.110162749 7.081290114 0.04 1 -0.173629971 -0.1186141863 865.4865301 -1.163730934 -1.21010522 2 3 4 5 6 0.336106 -0.485057 0.286535 0.142898 0.177012 -0.158381 0.761515 0.725080 0.802064 0.830923 1.093649 1.077004 20.465550 20.492582 1.029412 31.581239 31.558863 -0.852135 40.977767 40.992552 0.563006 55.270047 55.272771 0.103731 30.006111 30.025699 0.745926 57.695198 57.720032 0.945706 70.165117 70.157796 -0.278804 71.987414 71.990164 0.104715 20.465550 31.581239 40.977767 61.043323 71.987414 89.525200 110.471154 114.273568 30.006111 57.695198 70.165117 73.549445 55.270047 75.963954 89.363369 91.686451