********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,34/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,25/2,5) ( 3,35/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,24/2,6) ( 4,34/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-40/2,2,4) ( 1,-40/2,4,4) ( 1,-40/2,2,3.5) ( 1,-50/2,2,3.75) ( 1,-50/2,2,4.25) ( 1,-70/2,2,4) ( 1,-70/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=0 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=2.5 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 7 9.604729214 -0.3926699882 5.640507282 0.1453085056 1 -0.4133270229 -0.2157804044 50 -1.086034176 -1.479585058 2 3 4 5 6 0.412995 -0.758464 0.682880 0.187180 0.074139 -0.048847 0.861536 0.739166 0.898897 0.887269 1.215623 1.222205 3.246196 3.271930 0.959150 23.220179 23.197906 -0.830184 35.777006 35.785802 0.327835 44.784104 44.805578 0.800380 27.860273 27.879908 0.731832 48.502349 48.533102 1.146194 60.273550 60.254222 -0.720422 60.312602 60.302677 -0.369906 3.246196 23.220179 35.777006 44.784104 62.385767 77.460306 85.802128 96.682957 27.860273 48.502349 60.273550 60.312602 45.169460 65.649594 61.304792 72.213506 2 51 9.611153005 -0.3926699882 5.640507282 0.1453085056 1 -0.413244753 -0.2167825992 17.64823786 1.288822823 -1.494785695 2 3 4 5 6 0.412995 -0.758464 0.682880 0.187180 0.074139 -0.048847 0.861536 0.739166 0.898897 0.887269 1.215623 1.222205 3.246196 3.271930 0.959150 23.220179 23.197906 -0.830184 35.777006 35.785802 0.327835 44.784104 44.805578 0.800380 27.860273 27.879908 0.731832 48.502349 48.533102 1.146194 60.273550 60.254222 -0.720422 60.312602 60.302677 -0.369906 3.246196 23.220179 35.777006 44.784104 62.385767 77.460306 85.802128 96.682957 27.860273 48.502349 60.273550 60.312602 45.169460 65.649594 61.304792 72.213506 2 41 16.43896473 -0.8415201463 6.962079971 0.1921681542 1 -0.4316287667 -0.1635591678 228.1681143 -1.903696669 -1.969498337 2 3 4 5 6 0.549414 -0.395728 -0.079719 0.147677 0.123179 -0.102266 0.925525 0.865442 0.906924 0.952144 1.196139 1.170067 24.585045 24.601148 0.985493 45.962410 45.942670 -1.208094 49.496877 49.511166 0.874489 73.680105 73.681553 0.088607 38.683260 38.695451 0.746102 79.593277 79.607891 0.894390 79.648443 79.663367 0.913341 89.355917 89.329278 -1.630309 24.585045 45.962410 49.496877 81.040886 94.324494 112.852671 137.798416 139.779796 38.683260 79.648443 79.593277 89.355917 73.680105 100.909358 110.110061 111.678640 2 7 17.41253947 -0.8415201463 6.962079971 0.1921681542 1 -0.4302997803 -0.1602216036 50 2.034154234 -1.914967656 2 3 4 5 6 0.549414 -0.395728 -0.079719 0.147677 0.123179 -0.102266 0.925525 0.865442 0.906924 0.952144 1.196139 1.170067 24.585045 24.601148 0.985493 45.962410 45.942670 -1.208094 49.496877 49.511166 0.874489 73.680105 73.681553 0.088607 38.683260 38.695451 0.746102 79.593277 79.607891 0.894390 79.648443 79.663367 0.913341 89.355917 89.329278 -1.630309 24.585045 45.962410 49.496877 81.040886 94.324494 112.852671 137.798416 139.779796 38.683260 79.648443 79.593277 89.355917 73.680105 100.909358 110.110061 111.678640 2 9 257846.1212 -1.420957265 -0.1590134405 0.25 1 -0.3652185139 -0.1797844676 3.124025944 50 -1.472275693 2 3 4 5 6 0.689346 -0.303652 -0.357552 -6.307285 -2.945815 4.868702 1.000262 33.098904 1.077941 -16.791228 1.450455 -33.519830 -0.632193 -0.633002 0.001419 -1.287067 -1.287456 0.000683 -1.521486 -1.521894 0.000715 -1.537392 -1.536973 -0.000736 -0.992559 -0.992747 0.000331 -1.980341 -1.980461 0.000210 -2.294707 -2.295117 0.000720 -2.576166 -2.575687 -0.000840 -0.632193 -1.287067 -1.521486 -1.537392 -2.641834 -3.076166 -3.727931 -3.760525 -0.992559 -1.980341 -2.294707 -2.576166 -2.203394 -2.862011 -3.158433 -3.335422 2 22 258144.039 -1.420957265 -0.1590134405 0.25 1 -0.3890014391 -0.1778149707 -0.349779597 49.91178637 -2.188430419 2 3 4 5 6 0.689346 -0.303652 -0.357552 -6.307285 -2.945815 4.868702 1.000262 33.098904 1.077941 -16.791228 1.450455 -33.519830 -0.632193 -0.633002 0.001419 -1.287067 -1.287456 0.000683 -1.521486 -1.521894 0.000715 -1.537392 -1.536973 -0.000736 -0.992559 -0.992747 0.000331 -1.980341 -1.980461 0.000210 -2.294707 -2.295117 0.000720 -2.576166 -2.575687 -0.000840 -0.632193 -1.287067 -1.521486 -1.537392 -2.641834 -3.076166 -3.727931 -3.760525 -0.992559 -1.980341 -2.294707 -2.576166 -2.203394 -2.862011 -3.158433 -3.335422