********** Eigenvalues for the 2+1 transverse lattice ********** Couplings: m^2, G^2 N, la_1, la_2, la_3, tau_1, tau_2 0 1 2 3 4 5 6 (2-6 /a) Use chi^2 fit with 14 criteria, and tolerance 0.001. Overall scale from minimizing chi^2. 2 parity doublets with fractional errors 1 0.1. Spectrum for P_perp a = (0) ( 0.25) using (# states, o, multiplet, c^2 error for each) = (4, 1 & -1, 1 & 2, 0.1 2 2 0.5) (4, 1 & -1, 2 & 1, 0.25 0.25 1 1). Spectra extrapolated using (K,p) = (20/2,6) (20/2,8) (26/2,6) (32/2,6) . Winding potential using (n,K,p) = ( 2,20/2,4) ( 2,20/2,6) ( 2,24/2,4) ( 2,34/2,4) ( 3,21/2,5) ( 3,21/2,7) ( 3,25/2,5) ( 3,35/2,5) ( 4,20/2,6) ( 4,20/2,8) ( 4,24/2,6) ( 4,34/2,6) . Heavy potential determined using (n,K,p,K_max) = ( 1,-40/2,2,4) ( 1,-40/2,4,4) ( 1,-40/2,2,3.5) ( 1,-50/2,2,3.75) ( 1,-50/2,2,4.25) ( 1,-70/2,2,4) ( 1,-70/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error 0.1. Roundness determined using (n,K,p,K_max) = ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=0 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=2.5 and error 0.1; ( 1,-21/2,3,4) ( 1,-21/2,5,4) ( 1,-21/2,3,3.5) ( 1,-35/2,3,4) ( 1,-35/2,3,5) ( 1,-69/2,3,5) ( 1,-69/2,3,6) L=5 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1) and (K,p) = (21/2,3) (27/2,3) (39/2,3) (21/2,5) (27/2,5) (21/2,7) (23/2,7) . Result format: Fit info, # steps, chi^2, p damping, and scale G^2 N/sigma. The 7 couplings (G^2 N units) and which--if any--were fit. Winding potential and heavy source potential fits. Roundness with calculated and derived values (G^2 N units). The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 1 63 6.370164754 -1.715868283 7.572460367 0 1 -0.00388139087 -0.114934935 2421.240119 -0.6625789889 -0.6704465208 2 3 4 5 6 0.191058 -0.421972 0.252975 0.132542 0.234986 -0.224797 0.621269 0.605777 0.710037 0.730573 1.004086 0.992260 17.989366 18.034693 1.049257 28.320188 28.290514 -0.686909 35.825838 35.851820 0.601441 46.630916 46.638400 0.173240 24.061804 24.094341 0.753176 45.992042 46.029674 0.871142 60.250317 60.254106 0.087695 64.082798 64.117432 0.801732 17.989366 28.320188 35.825838 52.046823 60.250317 77.265373 91.828830 98.060247 24.061804 45.992042 64.082798 66.978856 46.630916 67.777089 75.335254 83.222567 1 51 6.546390059 -1.715868283 7.572460367 0 1 -0.005773821378 -0.1045757157 4213.671756 1.110502258 -0.8343633171 2 3 4 5 6 0.191058 -0.421972 0.252975 0.132542 0.234986 -0.224797 0.621269 0.605777 0.710037 0.730573 1.004086 0.992260 17.989366 18.034693 1.049257 28.320188 28.290514 -0.686909 35.825838 35.851820 0.601441 46.630916 46.638400 0.173240 24.061804 24.094341 0.753176 45.992042 46.029674 0.871142 60.250317 60.254106 0.087695 64.082798 64.117432 0.801732 17.989366 28.320188 35.825838 52.046823 60.250317 77.265373 91.828830 98.060247 24.061804 45.992042 64.082798 66.978856 46.630916 67.777089 75.335254 83.222567 3 36 7.221793145 -1.460665053 7.347981832 0.001967542671 1 -0.05204096037 -0.108108538 1047.692376 -0.7368299707 -0.774257767 2 3 4 5 6 0.221422 -0.447331 0.286189 0.136835 0.222056 -0.211328 0.656068 0.634063 0.735942 0.756370 1.031029 1.019126 17.612442 17.652802 1.050644 27.074878 27.044137 -0.800257 36.384500 36.408210 0.617233 46.785291 46.790898 0.145967 25.206115 25.235088 0.754215 47.328836 47.360841 0.833177 61.406704 61.405160 -0.040210 64.772982 64.792092 0.497494 17.612442 27.074878 36.384500 51.815035 61.406704 78.208694 91.839317 101.709321 25.206115 47.328836 64.772982 66.722226 46.785291 66.537981 76.068306 78.110084 2 36 7.409986269 -1.460665053 7.347981832 0.001967542671 1 -0.05140513834 -0.0989481855 801.0438393 1.168299077 -0.9282915879 2 3 4 5 6 0.221422 -0.447331 0.286189 0.136835 0.222056 -0.211328 0.656068 0.634063 0.735942 0.756370 1.031029 1.019126 17.612442 17.652802 1.050644 27.074878 27.044137 -0.800257 36.384500 36.408210 0.617233 46.785291 46.790898 0.145967 25.206115 25.235088 0.754215 47.328836 47.360841 0.833177 61.406704 61.405160 -0.040210 64.772982 64.792092 0.497494 17.612442 27.074878 36.384500 51.815035 61.406704 78.208694 91.839317 101.709321 25.206115 47.328836 64.772982 66.722226 46.785291 66.537981 76.068306 78.110084 2 44 8.017525812 -1.357983891 7.2635494 0.007919222016 1 -0.0858035476 -0.1057199312 3285.646128 -0.8568898887 -0.8971987453 2 3 4 5 6 0.254921 -0.464866 0.301875 0.138571 0.208906 -0.195230 0.688086 0.663858 0.756309 0.779953 1.050452 1.036666 18.720482 18.755829 1.047172 27.879574 27.851213 -0.840241 37.726643 37.747287 0.611613 49.113923 49.118106 0.123932 26.666110 26.691219 0.743865 50.363616 50.391844 0.836271 64.387418 64.380325 -0.210119 66.391154 66.398824 0.227226 18.720482 27.879574 37.726643 54.304682 64.387418 81.433187 96.594970 105.615107 26.666110 50.363616 66.391154 68.628022 49.113923 69.865748 79.109677 81.634381 -2 38 8.186556211 -1.357983891 7.2635494 0.007919222016 1 -0.08546984463 -0.09958038171 3161.643744 1.253247934 -1.030973626 2 3 4 5 6 0.254921 -0.464866 0.301875 0.138571 0.208906 -0.195230 0.688086 0.663858 0.756309 0.779953 1.050452 1.036666 18.720482 18.755829 1.047172 27.879574 27.851213 -0.840241 37.726643 37.747287 0.611613 49.113923 49.118106 0.123932 26.666110 26.691219 0.743865 50.363616 50.391844 0.836271 64.387418 64.380325 -0.210119 66.391154 66.398824 0.227226 18.720482 27.879574 37.726643 54.304682 64.387418 81.433187 96.594970 105.615107 26.666110 50.363616 66.391154 68.628022 49.113923 69.865748 79.109677 81.634381 2 38 8.532763521 -1.557054463 7.848962264 0.01800590693 1 -0.1034342375 -0.08832654646 3476.586169 -1.137693126 -1.109529497 2 3 4 5 6 0.307121 -0.457813 0.260890 0.127282 0.209750 -0.188951 0.724092 0.719958 0.766236 0.810664 1.050190 1.024767 25.759382 25.786281 1.037443 34.228550 34.206917 -0.834357 43.141544 43.159863 0.706534 59.517802 59.520144 0.090316 31.098920 31.117991 0.735543 61.558903 61.582864 0.924166 75.001228 74.991260 -0.384482 76.238712 76.242954 0.163625 25.759382 34.228550 43.141544 68.980143 76.238712 95.297004 116.076143 122.326015 31.098920 61.558903 75.001228 79.301210 59.517802 85.415761 91.947551 97.616199 2 49 8.529634699 -1.567106314 7.90918129 0.01800590693 1 -0.1033621529 -0.0868150849 1880.125265 1.472924885 -1.208273142 2 3 4 5 6 0.308015 -0.457542 0.260570 0.127340 0.170763 -0.143708 0.724233 0.696985 0.747814 0.785575 1.018132 0.996409 26.072937 26.099428 1.032584 34.514738 34.493465 -0.829202 43.478458 43.496866 0.717494 60.053998 60.056283 0.089081 31.356953 31.375895 0.738332 62.140839 62.164687 0.929583 75.598597 75.589142 -0.368533 76.893820 76.896534 0.105783 26.072937 34.514738 43.478458 69.694412 76.893820 96.103651 117.051300 123.348179 31.356953 62.140839 75.598597 79.939992 60.053998 86.133812 92.711888 98.437401