PHY 202 Test 2 Preparation Spring semester, 2004

The purpose of this assignment is to help you prepare for the Test 2. Fill in the appropriate laws or definitions; all variables must be defined somewhere in review sheet; draw a picture when appropriate (*). Bring the completed assignment with you for use during the exam, and hand it in with your test: it will count as part of your test grade. Do not include any "extra" information on this assignment.

• Vector definitions						
– the gradient operator ∇ =						
– Cross product (for combinations of \hat{i} , \hat{j} , and \hat{k}).						
– electric flux $\Phi_{\mathbf{E}}$.						
ullet Force of $f E$ and $f B$ fields on charged particles						
– Lorenz force law (definition of ${\bf E}$ and ${\bf B}$)						
- motion of particle in a circle (vector form) and centripetal acceleration						
- electric dipole moment						
* definition ♣						
* torque						
* energy						

•	Relation between V and \mathbf{E} :						
	integral form ♣						
	- derivative form						
•	Charge/current conservation — definition of current (give units) ♣						
	- law in sentence form						
•	– law in terms of ρ and ${\bf J}$ Gauß' law. \clubsuit						
•	Superposition principle:						
•	Symmetries of ${\bf E}$ and V :						
•	Charges produce electric fields − Coulomb's law (comes from Gauß' law) ♣						
	rule for direction of \mathbf{F} :						
	$ {\bf E}$ of point charge (from Coulomb's law) \clubsuit						
	- E at the surface of a conductor						

- ${\bf E}$ in the interior of a conductor

	\sim			
•	() 1	rcl	111	ts

- definition of resistance (Ohm's law) ♣
- definition of electric power
- Kirchoff's 2 laws (note the associated conservation laws)

*

*

- definition of capacitance \clubsuit
- energy of a capacitor