PHY 202 Test 2 Preparation Spring semester, 2004 The purpose of this assignment is to help you prepare for the Test 2. Fill in the appropriate laws or definitions; all variables must be defined somewhere in review sheet; draw a picture when appropriate (*). Bring the completed assignment with you for use during the exam, and hand it in with your test: it will count as part of your test grade. Do not include any "extra" information on this assignment. | • Vector definitions | | | | | | | |---|--|--|--|--|--|--| | – the gradient operator ∇ = | | | | | | | | – Cross product (for combinations of \hat{i} , \hat{j} , and \hat{k}). | | | | | | | | | | | | | | | | – electric flux $\Phi_{\mathbf{E}}$. | ullet Force of $f E$ and $f B$ fields on charged particles | | | | | | | | – Lorenz force law (definition of ${\bf E}$ and ${\bf B}$) | | | | | | | | | | | | | | | | - motion of particle in a circle (vector form) and centripetal acceleration | - electric dipole moment | | | | | | | | * definition ♣ | | | | | | | | | | | | | | | | * torque | | | | | | | | | | | | | | | | * energy | | | | | | | | | | | | | | | | • | Relation between V and \mathbf{E} : | | | | | | | |---|---|--|--|--|--|--|--| | | integral form ♣ | | | | | | | | | - derivative form | | | | | | | | • | Charge/current conservation — definition of current (give units) ♣ | | | | | | | | | - law in sentence form | | | | | | | | • | – law in terms of ρ and ${\bf J}$ Gauß' law. \clubsuit | | | | | | | | • | Superposition principle: | | | | | | | | • | Symmetries of ${\bf E}$ and V : | | | | | | | | • | Charges produce electric fields − Coulomb's law (comes from Gauß' law) ♣ | | | | | | | | | rule for direction of \mathbf{F} : | | | | | | | | | $ {\bf E}$ of point charge (from Coulomb's law) \clubsuit | | | | | | | | | - E at the surface of a conductor | | | | | | | - ${\bf E}$ in the interior of a conductor | | \sim | | | | |---|--------|-----|-----|----| | • | () 1 | rcl | 111 | ts | - definition of resistance (Ohm's law) ♣ - definition of electric power - Kirchoff's 2 laws (note the associated conservation laws) * * - definition of capacitance \clubsuit - energy of a capacitor