PHY 202 Final Exam Preparation Spring semester, 2004 The purpose of this assignment is to help you prepare for the final exam. Fill in the appropriate laws or definitions; all variables must be defined somewhere in review sheet; draw a picture when appropriate (♣). Bring the completed assignment with you for use during the exam, and hand it in with your test: it will count as part of your test grade. Do not include any "extra" information on this assignment. ## • Vector definitions - the gradient operator ∇ = - Cross product (for combinations of \hat{x} , \hat{y} , and \hat{z}). - other right hand rule (unit normal to surface with boundary) . – electric or magnetic flux, $\Phi_{\mathbf{E}}$ or $\Phi_{\mathbf{B}}$. - Force of E and B fields on charged particles - Lorenz force law (definition of **E** and **B**) - motion of particle in a circle (vector form) and centripetal acceleration - force on a wire ♣ - electric and magnetic dipole moments electric magnetic definition * torque energy • Relation between V and \mathbf{E} : integral form ♣ - derivative form • Charge/current conservation - definition of current (give units) ♣ - law in sentence form - law in terms of ρ and **J** - Maxwell's equations \clubsuit Show any integration surfaces/volumes. Define ρ to be the charge density and \mathbf{J} to be the current density. Thus, $Q = \iiint_V \rho \, dV$ is the total charge inside a volume V and $I = \iint_{\sigma} \mathbf{J} \cdot \hat{n} \, dA$ is the total current going through surface σ . - Gauß' law - * integral form - * derivative form | – Ampère's law | |--| | * static field case (older version) | | * integral form | | * derivative form | | - Gauß law for B | | * integral form | | * derivative form | | – Faraday's law | | st for a coil of wire with N loops (older version) | | * integral form | | * derivative form | | • Superposition principle: | | • Symmetries: | | – of \mathbf{E} and V : | | – of B : | • Charges produce electric fields | – Coulomb's law (comes from Gauß' law) ♣ | |---| | rule for direction of \mathbf{F} : | | - E at the surface of a conductor | | - E in the interior of a conductor | | Currents produce magnetic fields | | – other-other right hand rule ♣ | | (The direction of the ${f B}$ field from a wire.) | | - B field of straight wire ♣ | | - B field of a tightly wound wire solenoid ♣ | | Circuits | | Kirchoff's 2 laws (note the associated conservation laws)* | | * | | - definition of resistance (Ohm's law) ♣ | | definition of electric power | | definition of capacitance ♣ | |---| | energy of a capacitor: — definition of (self) inductance ♣ | | energy of an inductor: | | • Waves | | four kinds of polarizations of light ♣ | | - spread of wave going through small hole ♣ | | interference of waves going through two holes ♣ | | definition of index of refraction Snell's law ♣ | | Quantum mechanics Two equations with Planck's constant (when to use each) * | | - Relation of probabilities and wavefunctions (see last lecture) | Fundamental laws are marked with bold face print.