## PHY 202 Final Exam Preparation

Spring semester, 2004

The purpose of this assignment is to help you prepare for the final exam. Fill in the appropriate laws or definitions; all variables must be defined somewhere in review sheet; draw a picture when appropriate (♣). Bring the completed assignment with you for use during the exam, and hand it in with your test: it will count as part of your test grade. Do not include any "extra" information on this assignment.

## • Vector definitions

- the gradient operator  $\nabla$  =
- Cross product (for combinations of  $\hat{x}$ ,  $\hat{y}$ , and  $\hat{z}$ ).
- other right hand rule (unit normal to surface with boundary) .



– electric or magnetic flux,  $\Phi_{\mathbf{E}}$  or  $\Phi_{\mathbf{B}}$  .

- Force of E and B fields on charged particles
  - Lorenz force law (definition of **E** and **B**)
  - motion of particle in a circle (vector form) and centripetal acceleration
  - force on a wire ♣

- electric and magnetic dipole moments electric magnetic definition \* torque energy • Relation between V and  $\mathbf{E}$ : integral form ♣ - derivative form • Charge/current conservation - definition of current (give units) ♣ - law in sentence form - law in terms of  $\rho$  and **J** 

- Maxwell's equations  $\clubsuit$  Show any integration surfaces/volumes. Define  $\rho$  to be the charge density and  $\mathbf{J}$  to be the current density. Thus,  $Q = \iiint_V \rho \, dV$  is the total charge inside a volume V and  $I = \iint_{\sigma} \mathbf{J} \cdot \hat{n} \, dA$  is the total current going through surface  $\sigma$ .
  - Gauß' law
    - \* integral form
    - \* derivative form

| – Ampère's law                                       |
|------------------------------------------------------|
| * static field case (older version)                  |
| * integral form                                      |
| * derivative form                                    |
| - Gauß law for B                                     |
| * integral form                                      |
| * derivative form                                    |
| – Faraday's law                                      |
| st for a coil of wire with $N$ loops (older version) |
| * integral form                                      |
| * derivative form                                    |
| • Superposition principle:                           |
| • Symmetries:                                        |
| – of $\mathbf{E}$ and $V$ :                          |
| – of <b>B</b> :                                      |

• Charges produce electric fields

| – Coulomb's law (comes from Gauß' law) ♣                                              |
|---------------------------------------------------------------------------------------|
| rule for direction of $\mathbf{F}$ :                                                  |
| - <b>E</b> at the surface of a conductor                                              |
| - <b>E</b> in the interior of a conductor                                             |
| Currents produce magnetic fields                                                      |
| <ul> <li>– other-other right hand rule ♣</li> </ul>                                   |
| (The direction of the ${f B}$ field from a wire.)                                     |
| - B field of straight wire ♣                                                          |
| - B field of a tightly wound wire solenoid ♣                                          |
| Circuits                                                                              |
| <ul><li>Kirchoff's 2 laws (note the associated conservation laws)</li><li>*</li></ul> |
| *                                                                                     |
| - definition of resistance (Ohm's law) ♣                                              |
| <ul> <li>definition of electric power</li> </ul>                                      |

| <ul> <li>definition of capacitance ♣</li> </ul>                                                                   |
|-------------------------------------------------------------------------------------------------------------------|
| energy of a capacitor:  — definition of (self) inductance ♣                                                       |
| energy of an inductor:                                                                                            |
| • Waves                                                                                                           |
| <ul> <li>four kinds of polarizations of light ♣</li> </ul>                                                        |
| - spread of wave going through small hole ♣                                                                       |
| <ul> <li>interference of waves going through two holes ♣</li> </ul>                                               |
| <ul> <li>definition of index of refraction</li> <li>Snell's law ♣</li> </ul>                                      |
| <ul> <li>Quantum mechanics</li> <li>Two equations with Planck's constant (when to use each)</li> <li>*</li> </ul> |
| - Relation of probabilities and wavefunctions (see last lecture)                                                  |

Fundamental laws are marked with bold face print.